Skip to main content

Table 1 Research on natural bioactive substances and effects on food-borne viruses and contaminants

From: Natural bioactive substances for the control of food-borne viruses and contaminants in food

Bioactive substances Functional component Source Effect Possible mechanism Reference
Polyphenols Glyasperin, Glycyrin
2′-Methoxyisoliquiritigenin
Licoflavono, Glyasperin D
Roots of Glycyrrhiza uralensis ↓Group A rotaviruses ↓Virus absorption to cells
↓Viral replication after entry
Kwon et al. (2010)
Tannic acid Chinese Gall
Pomegranate
↓Noroviruses ↓NoV P proteins binding to their HBGA receptors Zhang et al. (2012)
Caffeic acid,
Cyanidin-3-rutinoside, 3,4-Dihydroxybenzoic acid, Rutin
Mulberry Human norovirus ↓Viral replication Oh et al. (2013)
Gallic acid, Caffeic acid, Ellagic acid, Quercetin, Cyanidin-3-glucoside Black raspberry ↓Human norovirus ↓Viral gene expression
↓Plaque formation
Lee et al. (2016)
Gallic acid,
Chlorogenic acid,
Caffeic acid, Ferulic acid, Rutin, Quercetin
Potato peel ↓Human Enteric Viruses ↓Viral replication Silva-beltrán et al. (2017)
Epigallocatechin gallate Green tea ↓Murine norovirus
↓Hepatitis A virus
Nonspecific binding to viral surface proteins
↓Viral attachment to cell membrane receptors
Randazzo et al. (2017)
Aged-green tea extract Camellia sinensis L. ↓Human norovirus ↓Binding of virus to histo-blood group antigens
structural damage
Falcó et al. (2019)
Pinosylvin Wood ↓Gram-negative/ positive bacteria Interacting with cell membrane (Plumed-ferrer et al. 2013)
Tea polyphenols extract Green tea Staphylococcus aureus
↓Salmonella serotype
Affecting the formation of the cell membrane (Hongmei Zhang et al. 2014)
Ellagic acid,
Gallic acid, Rutin
Passiflora ligularis Juss. fruit fungal strains Candida albicans
↓Aspergillus niger
structural or functional damage to the bacterial cell membrane (Saravanan and Parimelazhagan 2014)
Epicatechin Green tea ↓Acrylamide Trapping of carbonyl compounds
↓ lipid oxidation
(Liu et al. 2015)
Proanthocyanidins Grape seed ↓Residual nitrite ↓Oxidation (Wang et al. 2015)
Essential oil Carvacrol,
Thymol methyl ether
Zataria multiflora Boiss ↓Norovirus Inactivating the virus (Elizaquível et al. 2013)
Carvacrol Oregano oil ↓Murine norovirus Binding to the virus
↓Virus adsorption to host cells
(Gilling et al. 2014)
Ocimene, a-Terpinolene
Citral, d-Limonene
Lemongrass essential oil ↓Norovirus ↓Viral replication (Kim et al. 2017)
Limonene, β-Pinene, γ-Terpinene, Cineole, ɑ-Pinene, Camphor, Camphene Lemon, sweet orange,
Grapefruit, rosemary cineole
↓Hepatitis A Virus Inactivating the virus (Battistini et al. 2019)
Piperitone,
α-Phellandrene, p-Cymene
Australian
Eucalyptus
↓Gram-negative/ positive bacteria Interacting with cell membrane (Gilles et al. 2010)
Carvacrol Herbs S. aureus
Staphylococcus epidermidis
Interacting with cell membrane (Miranda-novales and Solo 2012)
Geraniol Herbs ↓Gram-negative bacteria Interacting with cell membrane (Miranda-novales and Solo 2012)
Cinnamaldehyde Cinnamon E. coli and S. aureus Change Membrane potential (Zhang et al. 2016a, b)
Methyl cinnamate
γ-terpinene
Ocimum gratissimum ↓Aflatoxin B1 ↓Aflatoxin secretion (Prakash et al. 2011)
Cymene Cuminum cyminum (L.) seed ↓Aflatoxin B1 ↓Aflatoxin secretion (Kedia et al. 2014)
Protein Lactadherin Human and Bovine Milk ↓Rotavirus Affect protein structure (Petersen et al. 2004)
Lactoferrin Breast milk ↓Hepatitis A Virus Interfering with virus-receptor Interaction (Waarts et al. 2005)
Lactadherin Human and Bovine Milk ↓Poliovirus ↓Viral replication (Pan et al. 2006)
Lactadherin Breast milk ↓Murine norovirus ↓Viral replication (Ishikawa et al. 2013)
α-Caseins Milk ↓Gram-positive bacteria Cationic glycopeptides (Benkerroum 2010)
Hepcidin TH1–5 Fish ↓Gram-positive bacteria ↓Activity (Najafian and Babji 2012a)
Polysaccharides Chitosan Crustaceans ↓Human noroviruses ↓Viral replication (Davis et al. 2012)
Water-soluble Chitosan Crustaceans Enteric viruses Viral structural damage (Davis et al. 2015)
Extract from Houttuynia cordata Houttuynia cordata ↓Murine norovirus
↓Human noroviruses
Deforming and inflating virus particles (Cheng et al. 2019)
Polysaccharide Streptomyces virginia H03 Streptomyces virginia H03 Staphylococcus aureus
Listeria monocytogenes
Escherichia coli
Affecting cytoplasmic membrane permeability
/DNA binding
(He et al. 2010)
Sulfated polysaccharides Gray triggerfish ↓Gram-negative/ positive bacteria Interacting with cell membrane (Krichen et al. 2015)
Polysaccharides extract Algae ↓ Escherichia coli ↓proliferation (Rivas et al. 2017)
Polysaccharides extract Algae ↓ Salmonella spp. ↓proliferation (Rivas et al. 2017)
Chitosan Crab processing discards ↓Ion contaminants Metal chelation (Gamage and Shahidi 2007)
Alkaloids Pelleteriene Pomegranate seed ↓Staphylococcus aureus ↓membrane permeability (Ismail et al. 2012)
Pyrazinecarboxamide derivative
Indole derivative
Alkaloid derivative ↓Hepatitis A Virus
↓Norovirus
↓replication of the virus (Hwu et al. 2017)
Quinine The bark of the cinchona ↓Malaria
Possible↓COVID-19
↓replication of the virus (Achan et al. 2011)
(Gautret et al. 2020)
Alkaloid extracts Solanum nigrum Escherichia coli,
Proteus mirabilis,Staphylococcus aureus,
Pseudomonas aerogenosa
Interact with cell membrane (Jasim et al. 2015)
Organic sulfur compounds Sulfur compounds extracts Fresh garlic by-products S. aureus,
S. enteritidis,
E. coli, B. cereus,
L. monocytogens
Interact with cell membrane (Jang et al. 2018)
Sulfur compounds extracts Green vegetables ↓Hepatitis A Virus
↓Norovirus
↓replication of the virus (Sofy et al. 2018)
Sulfur compounds extracts Herbs Bacillus cereus,
Campylobacter jejuni,
Clostridium, Escherichia coli,
Listeria
Monocytogenes,
Salmonella enterica,Staphylococcus
Interact with cell membrane (Ikeura and Koabayashi 2015)
Diallyl sulfides,
Diallyl monosulfide,
Diallyl disulfide,
Diallyl trisulfide,
Diallyl tetrasulfide
Chive oil Staphylococcus aureus
Listeria monocytogenes
Escherichia coli
Interact with cell membrane (Rattanachaikunsopon and Phumkhachorn 2008)
Allicin Garlic possible↓virus ↑Immunity (Rahman 2007)