Skip to main content

Table 1 Research on natural bioactive substances and effects on food-borne viruses and contaminants

From: Natural bioactive substances for the control of food-borne viruses and contaminants in food

Bioactive substances

Functional component

Source

Effect

Possible mechanism

Reference

Polyphenols

Glyasperin, Glycyrin

2′-Methoxyisoliquiritigenin

Licoflavono, Glyasperin D

Roots of Glycyrrhiza uralensis

↓Group A rotaviruses

↓Virus absorption to cells

↓Viral replication after entry

Kwon et al. (2010)

Tannic acid

Chinese Gall

Pomegranate

↓Noroviruses

↓NoV P proteins binding to their HBGA receptors

Zhang et al. (2012)

Caffeic acid,

Cyanidin-3-rutinoside, 3,4-Dihydroxybenzoic acid, Rutin

Mulberry

Human norovirus

↓Viral replication

Oh et al. (2013)

Gallic acid, Caffeic acid, Ellagic acid, Quercetin, Cyanidin-3-glucoside

Black raspberry

↓Human norovirus

↓Viral gene expression

↓Plaque formation

Lee et al. (2016)

Gallic acid,

Chlorogenic acid,

Caffeic acid, Ferulic acid, Rutin, Quercetin

Potato peel

↓Human Enteric Viruses

↓Viral replication

Silva-beltrán et al. (2017)

Epigallocatechin gallate

Green tea

↓Murine norovirus

↓Hepatitis A virus

Nonspecific binding to viral surface proteins

↓Viral attachment to cell membrane receptors

Randazzo et al. (2017)

Aged-green tea extract

Camellia sinensis L.

↓Human norovirus

↓Binding of virus to histo-blood group antigens

structural damage

Falcó et al. (2019)

Pinosylvin

Wood

↓Gram-negative/ positive bacteria

Interacting with cell membrane

(Plumed-ferrer et al. 2013)

Tea polyphenols extract

Green tea

↓Staphylococcus aureus

↓Salmonella serotype

Affecting the formation of the cell membrane

(Hongmei Zhang et al. 2014)

Ellagic acid,

Gallic acid, Rutin

Passiflora ligularis Juss. fruit

↓fungal strains Candida albicans

↓Aspergillus niger

structural or functional damage to the bacterial cell membrane

(Saravanan and Parimelazhagan 2014)

Epicatechin

Green tea

↓Acrylamide

Trapping of carbonyl compounds

↓ lipid oxidation

(Liu et al. 2015)

Proanthocyanidins

Grape seed

↓Residual nitrite

↓Oxidation

(Wang et al. 2015)

Essential oil

Carvacrol,

Thymol methyl ether

Zataria multiflora Boiss

↓Norovirus

Inactivating the virus

(Elizaquível et al. 2013)

Carvacrol

Oregano oil

↓Murine norovirus

Binding to the virus

↓Virus adsorption to host cells

(Gilling et al. 2014)

Ocimene, a-Terpinolene

Citral, d-Limonene

Lemongrass essential oil

↓Norovirus

↓Viral replication

(Kim et al. 2017)

Limonene, β-Pinene, γ-Terpinene, Cineole, ɑ-Pinene, Camphor, Camphene

Lemon, sweet orange,

Grapefruit, rosemary cineole

↓Hepatitis A Virus

Inactivating the virus

(Battistini et al. 2019)

Piperitone,

α-Phellandrene, p-Cymene

Australian

Eucalyptus

↓Gram-negative/ positive bacteria

Interacting with cell membrane

(Gilles et al. 2010)

Carvacrol

Herbs

↓S. aureus

Staphylococcus epidermidis

Interacting with cell membrane

(Miranda-novales and Solo 2012)

Geraniol

Herbs

↓Gram-negative bacteria

Interacting with cell membrane

(Miranda-novales and Solo 2012)

Cinnamaldehyde

Cinnamon

↓E. coli and S. aureus

Change Membrane potential

(Zhang et al. 2016a, b)

Methyl cinnamate

γ-terpinene

Ocimum gratissimum

↓Aflatoxin B1

↓Aflatoxin secretion

(Prakash et al. 2011)

Cymene

Cuminum cyminum (L.) seed

↓Aflatoxin B1

↓Aflatoxin secretion

(Kedia et al. 2014)

Protein

Lactadherin

Human and Bovine Milk

↓Rotavirus

Affect protein structure

(Petersen et al. 2004)

Lactoferrin

Breast milk

↓Hepatitis A Virus

Interfering with virus-receptor Interaction

(Waarts et al. 2005)

Lactadherin

Human and Bovine Milk

↓Poliovirus

↓Viral replication

(Pan et al. 2006)

Lactadherin

Breast milk

↓Murine norovirus

↓Viral replication

(Ishikawa et al. 2013)

α-Caseins

Milk

↓Gram-positive bacteria

Cationic glycopeptides

(Benkerroum 2010)

Hepcidin TH1–5

Fish

↓Gram-positive bacteria

↓Activity

(Najafian and Babji 2012a)

Polysaccharides

Chitosan

Crustaceans

↓Human noroviruses

↓Viral replication

(Davis et al. 2012)

Water-soluble Chitosan

Crustaceans

Enteric viruses

Viral structural damage

(Davis et al. 2015)

Extract from Houttuynia cordata

Houttuynia cordata

↓Murine norovirus

↓Human noroviruses

Deforming and inflating virus particles

(Cheng et al. 2019)

Polysaccharide Streptomyces virginia H03

Streptomyces virginia H03

Staphylococcus aureus

Listeria monocytogenes

Escherichia coli

Affecting cytoplasmic membrane permeability

/DNA binding

(He et al. 2010)

Sulfated polysaccharides

Gray triggerfish

↓Gram-negative/ positive bacteria

Interacting with cell membrane

(Krichen et al. 2015)

Polysaccharides extract

Algae

↓ Escherichia coli

↓proliferation

(Rivas et al. 2017)

Polysaccharides extract

Algae

↓ Salmonella spp.

↓proliferation

(Rivas et al. 2017)

Chitosan

Crab processing discards

↓Ion contaminants

Metal chelation

(Gamage and Shahidi 2007)

Alkaloids

Pelleteriene

Pomegranate seed

↓Staphylococcus aureus

↓membrane permeability

(Ismail et al. 2012)

Pyrazinecarboxamide derivative

Indole derivative

Alkaloid derivative

↓Hepatitis A Virus

↓Norovirus

↓replication of the virus

(Hwu et al. 2017)

Quinine

The bark of the cinchona

↓Malaria

Possible↓COVID-19

↓replication of the virus

(Achan et al. 2011)

(Gautret et al. 2020)

Alkaloid extracts

Solanum nigrum

↓Escherichia coli,

↓Proteus mirabilis, ↓Staphylococcus aureus,

↓Pseudomonas aerogenosa

Interact with cell membrane

(Jasim et al. 2015)

Organic sulfur compounds

Sulfur compounds extracts

Fresh garlic by-products

↓S. aureus,

↓S. enteritidis,

↓E. coli, B. cereus,

↓L. monocytogens

Interact with cell membrane

(Jang et al. 2018)

Sulfur compounds extracts

Green vegetables

↓Hepatitis A Virus

↓Norovirus

↓replication of the virus

(Sofy et al. 2018)

Sulfur compounds extracts

Herbs

↓Bacillus cereus,

↓Campylobacter jejuni,

↓Clostridium, Escherichia coli,

↓Listeria

↓Monocytogenes,

↓Salmonella enterica, ↓Staphylococcus

Interact with cell membrane

(Ikeura and Koabayashi 2015)

Diallyl sulfides,

Diallyl monosulfide,

Diallyl disulfide,

Diallyl trisulfide,

Diallyl tetrasulfide

Chive oil

Staphylococcus aureus

Listeria monocytogenes

Escherichia coli

Interact with cell membrane

(Rattanachaikunsopon and Phumkhachorn 2008)

Allicin

Garlic

possible↓virus

↑Immunity

(Rahman 2007)