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Abstract 

Pigment is an important food additive that plays a major role in the sensory impact of food. And natural sources, healthy 
and non‑toxic edible pigments are receiving a lot of attention. Algae is an important source of natural pigments, and 
contain chlorophyll, phycoerythrin, carotene, and other natural pigments. Besides staining, the pigment also has powerful 
physiological activities such as antioxidants, anti‑inflammatory, anti‑obesity, and lipid‑lowering. In this paper, three pigments 
in seaweed were reviewed, and their main structural properties and functions are presented, filling the gap in the review of 
pigments with seaweed as the main object of introduction. This review provides research basis for the development of new 
health foods, a new direction for the use of seaweed chlorophyll in the food and pharmaceutical industries.
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Synthetic pigments are currently the most widely used 
pigments in the food industry. Although they have vari-
ous types and good colorability advantages, their safety 
is still controversial (Shanmugasundaram & Rujas-
wini 2019). Therefore, there is still a great demand for 
natural pigments. Seaweed is not only rich in pigments 
but also diverse enough to meet the industrial coloring 
needs to some extent. With the increasing interest in 
seaweed in recent years, the utilization of seaweed pig-
ments has gradually entered the public’s vision.

There are many kinds of research on natural pigments, 
but few are basically free to describe the natural pigments 
of algae from the perspective of algae. At present, there 
is an increasing number of research on algal pigments 
(Fig.  1). In this paper, three pigments from algae are 
introduced, and their structures and physiological activi-
ties are also described.

Chlorophyll
Chlorophyll is a family of fat pigments that includes 
chlorophyll a, chlorophyll b, chlorophyll c, chlorophyll 
d, protochlorophyllide, etc. (Fig. 2). It can reflect green 
light well, so its overall green appearance, and it plays 
a central role in the light absorption process of photo-
synthesis. Chlorophyll is an unstable magnesium por-
phyrin compound with poor water solubility and high 
solubility in organic solvents, and is easily decomposed 
by light, acid, base, and oxidants. To make chlorophyll’s 
green color persist during food processing, food devel-
opers, in order to maintain the stability of chlorophyll, 
often use chlorophyllide, a derivative of chlorophyll 
(Bednarczyk et  al.  2021), or by adding sodium casein-
ate (He et  al.  2019), antioxidants, or replace magne-
sium ions in the chlorophyll structure by using zinc and 
copper plasma. As an essential natural green pigment, 
chlorophyll has no toxic side effects (Solymosi & Mys-
liwa-Kurdziel 2017). With the maturity of green protec-
tion technology year by year, chlorophyll has become 
more and more widely used and favored by food pro-
cessing (Solymosi & Mysliwa-Kurdziel  2017). In the 
food industry, it is often used to color cakes and bever-
ages, or to protect the color of canned vegetables and 
fruits (Yasuda & Tabata 2021).

Chlorophyll is the most common pigment in algae, and 
the chlorophyll contained in algae mainly includes a, b, 
c, d, and f (Chen et al. 2017). The main food-related ones 
are chlorophyll a and b, both of which can be found and 
extracted in algae, especially green algae. Among them, 
Spirulina is one of the plants with the highest chloro-
phyll a content, even up to 2–3 times the content of other 
plants, and is considered a good source of chlorophyll a. 
Chlorophyll a extracted from Spirulina interacts with its 
C-phycocyanin and prevents cell death through BDNF 

Introduction
Algae are a kind of heterogeneous flora with a long fossil 
history and are widely distributed in various areas of the 
earth. According to statistics, there are about 10, 000 
species of algae in the world (Mac Monagail et al. 2017), 
and about 291 species are used by people (White & 
Wilson  2015). In recent years, with the development 
and utilization of marine resources, various compo-
nents functions of marine algae have been explored by 
researchers. Marine algae are rich in active substances 
such as protein, carbohydrates, fiber, microorganisms, 
amino acids, and fatty acids, which have a positive 
effect on the human body. Both nutrient-rich seaweeds 
themselves and seaweed extracts with various bioactivi-
ties are becoming new materials for the development 
of functional and nutritional health foods (Ścieszka &  
Klewicka 2019; Charoensiddhi et al. 2020). For example, 
it can be used to produce foods rich in polyunsaturated 
fat, providing a healthy fat source (Marques et al. 2021). 
The rich functional active ingredients in algae are well 
known for their anti-cancer (Ouyang et  al.  2021), anti-
inflammatory (Olsthoorn et  al.  2021), antibacterial 
(Karpiński & Adamczak  2019), preventive and thera-
peutic effects on diabetes (Lin et  al.  2018), and other 
positive effects on living organisms (Zhao et  al.  2020). 
These results provide data support and a theoretical 
basis for developing natural medicines for the preven-
tion and treatment of diabetes and other diseases (Yan 
et al. 2019).

Algae are rich in pigments, which consist of three 
main species, chlorophylls, phycobiliprotein, and carot-
enoids. Different algae have different pigments and 
appear in different colors. Biologists classify algae into 
Chlorophyta, Rhodophyta, and Phaeophyta based on 
their color. Chlorophyta appears green because it con-
tains a large amount of chlorophyll a, chlorophyll b, and 
part of carotene and lutein (Baweja et  al.  2016). The 
pigment ratio of algae is similar to that of seed plants. 
Common Chlorophyta includes Ulva, Spirogyra, etc. 
Rhodophyta contains a large number of phycoerythrin 
and phycocyanin (Baweja et  al.  2016), generally domi-
nant in the number of phycoerythrins, hence the red 
or purplish red color of most Rhodophyta. Porphyra 
haitanensis and Gelidium amansii belong to the Rho-
dophyta, and are commonly used in the processing of 
food. The yellow-brown or dark brown algae are Phaeo-
phyta, which contains chlorophyll a, chlorophyll c, car-
otene, and several kinds of lutein, mainly fucoxanthin 
(Baweja et al. 2016). A large amount of yellow pigment 
will cover the green so that they will have a different 
color from the other two types of algae. The pigment 
is widely used in the food industry, and is generally 
divided into natural pigments and synthetic pigments. 
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activation against amyloid beta 1–42 (Aβ)-induced neu-
rotoxicity in PC12 cells (Koh et al.  2018). Chlorophyll a 
can also act with C-phycocyanin to reduce fat produc-
tion and prevent obesity (Seo et al. 2018). Chlorophyll c 
is most commonly found in various algae rather than ter-
restrial plants, mainly including diatoms, dinoflagellates, 
and brown algae (Bachvaroff et  al.  2005). Most of the 
chlorophyll c required for experiments is extracted from 
diatoms. Chlorophyll b, d, and f are pretty important pho-
tosynthetic pigments (Loughlin et  al.  2013; Hernández-
Prieto et al. 2022), that can expand the absorption range 
of algae photo cooperation and improve the efficiency of 
photosynthesis, especially chlorophyll f (Follana-Berná 
et al. 2021; Nürnberg et al. 2018; Tomo et al. 2007). Chlo-
rophyll d is mostly found in cyanobacteria because the 
cysteine subunit rich in cyanobacteria may be directly 
involved in its synthesis, or that far-red light bicylindrical 
cores stabilize far-red light Photosystem II to prevent loss 
of chlorophyll d (Bryant et al. 2020).

As an important source of marine natural products, 
algae have been proven to have be rich in active sub-
stances and these active substances have been shown to 
have antioxidant effects and can neutralize reactive oxygen 
species, as well as which have certain immune responses 
against cancer, diabetes, and inflammation (Pradhan 
et  al.  2020). Osuna-Ruiz et  al. (2016) compared the anti-
oxidant ability of various bioactive substances of algae 
from the Mexican islands and found that chlorophyll 
is one of the main carriers of algal antioxidant ability. In 
addition to its use as a food coloring, algal chlorophyll is 
also used as an antioxidant (Zhang et al. 2022). Moreover, 
the chlorophyll extracted from diatoms and the decom-
position product of lysophosphatidylcholine were related 
to the anti-inflammatory activity (Lauritano et  al.  2020). 
Besides chlorophyll, chlorophyll derivatives, such as pheo-
phytin and chlorophyll-derived, can also be obtained 
from algae. The chlorophyll derivatives extracted from 
Grateloupia elliptica by HPLC can significantly inhibit 

Fig. 1 Sankey map of the number of the literature related to the three pigments in algae. The number of the literature is based on the ISI 
Web of Science search engine search using the following topics, The Phycobiliprotein bar chart contains the search results of Phycobiliprotein, 
Phycoerythrin, and Phycocyanin. Lines of the same color represent keywords from the same type. The last row of columns with different colors 
represents different years, and the different thickness of the columns represents the number of the literature related to the keywords
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the accumulation of intracellular lipids and have ben-
eficial effects on lipid metabolism (Huang et al. 2021; Lee 
et al. 2021). Two chlorophyll derivatives derived from Spir-
ulina, 132-hydroxy-pheophytin and the new compound 
132-hydroxy-pheofarnesin, are also involved in lipid-low-
ering activities and have obesity-preventive effects (Freitas 
et al. 2019). Chlorophyll extracted from the marine brown 
alga Sargassum fulvellum enhances the neural differen-
tiation of PC12 cells and has the potential to treat neu-
rodegenerative diseases, such as Alzheimer’s disease (Ina 
et al. 2007). Nelson and Ferruzzi (2008) demonstrated that 
chlorophyll and its derivatives are degraded in the human 
body and are absorbed and utilized by intestinal cells 
through in vitro simulated digestion experiments (Zhong 
et al. 2021).

In addition to the Spirulina mentioned above, Chlorella, 
Microalgae, and other algae (Prasanna et  al.  2007) have 
been gradually valued as important sources of chlorophyll 
by the food, medicine, cosmetics, and other industries due 
to their wide sources and high concentration of chloro-
phyll. Based on this, researchers have continued to opti-
mize and innovate techniques for extracting chlorophyll 
from algae (Martins et  al.  2021) and have attempted to 
grow algae with higher chlorophyll content (Nakanishi & 
Deuchi 2014). All these have laid a solid foundation for the 
wide applications of chlorophyll in algae.

Phycobiliprotein
Phycobilin is a class of photosynthetic pigments found 
only in algae, mainly includes phycoerythrobilin, phy-
courobilin, phycobiliviolin, and phycocyanobilin (Fig. 3). 

Their difference mainly lies in the number and position 
of their conjugated double bonds. Phycobilin is structur-
ally similar to chlorophyll and consists of four pyrrole 
rings linked by methylene (Mysliwa-Kurdziel & Soly-
mosi  2017), but unlike chlorophyll, the molecule is in a 
straight chain and does not contain magnesium atoms. 
Phycobilins are the chromophore of phycobiliprotein that 
not only absorbs normal light, it also collects light in the 
green gap of chlorophyll (Zhao et al. 2007), thus expand-
ing the light absorption range of algae and improving the 
efficiency of photosynthesis.

Phycobilin is usually covalently bound to apoprotein 
via a thioether bond to produce phycobiliprotein, which 
exists in algae as phycobiliprotein, and one phycobilipro-
tein contains at least 8 phycobilins. Phycobiliprotein is an 
oligomeric protein composing of two polypeptide chains 
with α, and β subunits bound as a monomer (αβ), gener-
ally in the form of trimers or hexamers in phycobilisomes 
of algae (Tandeau de Marsac 2003), and each subunit car-
rying a covalently linked tetrapyrrole prosthetic groups 
related to the bile pigment biliverdin. Phycobiliprotein is 
an important protein source for algae, and in the case of 
cyanobacteria, for example, it can make up 50% of total 
protein in the cell (Pagels et  al.  2019). As an important 
light-trapping color protein unique to algae, they only 
play the role of absorbing and transmitting light dur-
ing photosynthesis, so they are also known as an aux-
iliary pigment of photosynthetic (Sui  2021). The type 
and proportion of phycobiliprotein, the auxiliary pho-
tosynthetic pigment vary depending on the location of 
growth and light absorption by the algae (Bogorad 1975). 
Phycobiliprotein mainly include phycoerythrocyanin, 
phycoerythrin, and phycocyanin, depending on the 
phycobilin to which it is linked. According to the lit-
erature, phycobilin is a natural protein with antioxidant 
(Kim et  al.  2018), anti-inflammatory (Cervantes-Llanos 
et  al.  2018), anti-aging, anti-cancer, and other proper-
ties (Pagels et  al.  2019). Phycobiliprotein is not only an 
important natural pigment, but it also acts as a protein 
and contains a variety of essential amino acids that the 
human body needs. It can become a kind of bioactive 
substance with high nutritional value to the human body 
after proper treatment. As a unique natural pigment in 
algae, phycobiliprotein provides new options for prod-
ucts in the food, medicine, and cosmetics (Bleakley & 
Hayes 2017; Saini et al. 2018). In recent years, humanity 
has suffered another infectious disease crisis caused by 
the coronavirus, and drugs against such as viruses are 
urgently needed. The main protease and papain-like pro-
tease proteases of coronaviruses were studied as targets, 
and found that phycobilin has a specific affinity for them, 
indicating that it has some inhibitory potential on both 
proteins (Pendyala et  al.  2021). The data shows that the 

Fig. 2 Chlorophyll in algae and its biological activity
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market value of phycobiliprotein in 2018 reached approx-
imately 30 million US dollars, and the commercial value 
is increasing steadily at a compound annual growth rate 
of 21.3% (Patel et al. 2022).

Phycoerythrin
Phycoerythrin is a red-based phytochrome found in 
some algae that appears red or intense pink (Ramu Gane-
san et al. 2022; Manirafasha et al. 2016). The color it dis-
plays depends on the phycobilin to which it is attached. 
Due to its molecular structure contains 75% α -helix, it 
is relatively stable (Sathuvan et al. 2022). Based on their 
origin and absorption spectra, phycoerythrins are clas-
sified into four types: R-phycoerythrin, C-phycoeryth-
rin, b-phycoerythrin, and B-phycoerythrin (Munier 
et  al.  2014) (Fig.  4). The difference in their absorption 
spectra is due to the existence of different types of Bilin-
prosthetic groups (Glazer 1988). Algae generally contain 
a variety of phycoerythrin, with B- and R-phycoerythrin 
being the most common in algae.

The C-phycoerythrin absorption peak is at 565 nm 
(Galland-Irmouli et al. 2000). It has only two subunits, α 
and β, forming hexamers (αβ)6 (Glazer 1977). Moreover, 
it binds to only one kind of phycobilin, phycoerythrobi-
lin. C-phycoerythrin can prevent oxidative stress and cell 

damage, inhibit the generation of intracellular reactive 
oxygen species, and up-regulate the activities of super-
oxide dismutase and catalase (Sonani et al. 2017). Also, a 
previous study indicated that it has the potential to fight 
cancer and improve diabetes complications (Madamwar 
et al. 2015; Soni et al. 2009).

B-phycoerythrin is mainly found in Porphyridium cru-
entum (Gantt & Lipschultz  1974). The protein part of 
B-phycoerythrin is composed of three dissimilar subu-
nits, α, β, and γ, with 17.5 kDa, 7.5 kDa, and 30.2 kDa 
(Glazer & Hixson  1977). B-phycoerythrin forms the 
same hexamer as R-phycoerythrin but has a different 
absorption spectrum (Munier et al. 2014). Its absorption 
peaks are at 545 and 565 nm, with a shoulder at 499 nm 
(Galland-Irmouli et  al.  2000). This is because although 
B-phycoerythrin is also linked to phycoerythrobilin 
and phycourobilin, they contain two different types of 
tetrapyrrole prosthetic groups — the mesobilirhodin 
type (Glazer 1977). B-phycoerythrin has good structural 
stability at pH 4.0–10.0 (Gonzalez-Ramirez et  al.  2014). 
it was discovered to be a new natural pigment for milk 
that gives it a pink color and does not change color dur-
ing milk processing and preservation (García et al. 2021).

The protein part of b-phycoerythrin also has only two 
subunits, α and β, each of which is 17.5 kDa and forms 

Fig. 3 The structures of phycobilins. PXB, phycobiliviolin; PUB, phycourobilin; PEB, phycoerythrobilin; PCB, phycocyanobilin
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a complex (αβ)n (n = 1–6) (Glazer 1977). The value of n 
depends on the pH value, ionic strength, and other fac-
tors in the environment, with absorption spectral max-
ima are at 543 and 563 nm (Glazer & Hixson 1977). It has 
a similar amino acid composition, phycoerythrin con-
tent, and the same  NH2 terminal sequence as B-phyco-
erythrin (Glazer & Hixson 1977). It has been speculated 
that b-phycoerythrin may be a part of B-phycoerythrin 
(Glazer 1977), but until now, there is no clear evidence to 
confirm this conjecture.

Compared with other species, R-phycoerythrin is more 
widely distributed and more abundant. It is the most 
abundant phycoerythrin in red algae, accounting for 
about 1.3–1.5% of the dry cell weight (Babu Balaraman 
et al. 2021). According to research, R-phycoerythrin has 
physiological activities such as regulating immunity, anti-
cancer, and anti-tumor (Pan et al. 2013; Tan et al. 2016; 
Wang et  al.  2020), so its application is pretty extensive. 
The protein part of R-phycoerythrin is a 240 kDa oligo-
meric protein composed of three subunit types, namely α 
(18 kDa), β (21 kDa), and γ (21 kDa) (Sathuvan et al. 2022), 
where the γ subunit is a linker polypeptide containing a 
chromophore that joins two (αβ)3 trimers to form a com-
plex (αβ)6γ (Galland-Irmouli et  al.  2000). According to 
the research by Ulagesan et al. (2021), its α subunit has 
excellent antioxidant activity, and is a promising natural 
antioxidant and anti-cancer agent. The R-phycoerythrin-
linked phycobilins are phycoerythrin and phycourobilin, 
which have absorption peaks at 499 and 565 nm and a 
shoulder at 545 nm (Galland-Irmouli et  al.  2000). These 
optical properties are determined by the number of con-
jugated double bonds or the delocalization of their conju-
gated π-electrons (Sun et al. 2009).

The purity of R-phycoerythrin is generally obtained by 
calculating the absorbance with the following calcula-
tion formula: Purity index =  A565/A280  (A565, absorbance 
of the sample at 565 nm;  A280, absorbance of the sample 
at 280 nm) (Gu et  al.  2018). Depending on the increase 
in purity, it can be priced as high as US$180–250/mg 

(Xu et al. 2020). And with its rich physiological activity, 
R-phycoerythrin is considered as a bioactive molecule 
with high value. Based on its high utilization value, there 
are various methods for the extraction and purification of 
R-phycoerythrin. Commonly includes ammonium sulfate 
precipitation in combination with diethylaminoethyl-
Sepharose fast flow column chromatography (Munier 
et al. 2015), the combination of precipitation with ammo-
nium sulfate and Q-Sepharose column chromatogra-
phy (Senthilkumar et  al.  2013), hydroxyapatite column 
chromatography (Niu et  al.  2006), etc. To improve the 
extraction efficiency and purity of R-phycoerythrin and 
reduce the acquisition cost, there are several techniques 
for R-phycoerythrin extraction and purification based on 
two water-based systems (Gu et al. 2018; Xu et al. 2020), 
or combination and upgrade of existing techniques. 
However, due to the similarity of several phycobilipro-
teins, it is still necessary to improve the techniques and 
methods to obtain high purity R-phycoerythrin.

Phycocyanin
Like phycoerythrin, phycocyanin is a phytochrome 
found in algae, but it is usually found in large quantities 
in cyanobacteria and exhibits an intense blue color with 
a light absorption range is about 560–600 nm (Manira-
fasha et al. 2016). When algae photosynthesize, the light 
captured by phycoerythrin is first transmitted to phy-
cocyanin and then chlorophyll, so phycocyanin plays a 
significant role in this process (Bogorad 1975). The struc-
ture of phycocyanin is similar to that of phycoerythrin, 
including chromophore (phycobilin) and two protein 
parts, where the protein part also includes two subu-
nits, α and β, which are abundant in Spirulina and some 
microalgae. Phycocyanins are classifiedinto four groups: 
C-phycocyanin, R-phycocyanin, allophycocyanin, and 
allophycocyanin B (Kuddus et al. 2013). And, Spirulina is 
the most common source of various phycocyanin.

The protein part of R-phycocyanin is composed of only 
α and β subunits. There is one α subunit with a molecular 

Fig. 4 Distribution and quantity of phycobilin in subunits of phycocyanin (Glazer 1977)
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weight of 17.5 kDa, and two β subunits with a molecu-
lar weight of 21.3 kDa and 22.6 kDa, respectively (Wang 
et al. 2014). They exist as complexes (αβ)3 (Glazer & Hix-
son  1977). The phycobilin connected to its α subunit is 
phycocyanobilin, and the β subunit is linked to two phy-
cobilins, phycoerythrobilin, and phycocyanobilin (Glazer 
and Hixson 1977). Both the α and β subunits of R-phy-
cocyanin show a certain antioxidant activity, which can 
inhibit the generation of free radicals, and provide a new 
direction for the prevention of aging (Feng et  al.  2022). 
Also, R-phycocyanins have positive anti-allergic effects 
(Liu et al. 2015), and their physiological activity is gaining 
receiving attention.

Allophycocyanin is the simplest type of phycocyanin. 
The α and β subunits bind to form αβ complexes, with 
each of the two subunits linked to a phycocyanobilin 
(Dagnino-Leone et  al.  2020). The α-subunit of allophy-
cocyanin can be combined with streptavidin to form a 
fusion protein with similar spectral properties to native 
allophycocyanin (Wu et  al.  2018). However, after pro-
cessing, the fusion protein will have higher sensitivity for 
immunofluorescence detection and a more comprehen-
sive range of application (Chen & Jiang  2018). Allophy-
cocyanin also has some antioxidant activity, making it a 
better agent for peroxyl clearance than C-phycocyanin. 
However, it is a much lower scavenging agent of hydroxyl 
groups (Cherdkiatikul & Suwanwong 2014).

The structure of allophycocyanin B is similar to that of 
allophycocyanin in that their protein parts are composed 
of two subunits, α and β, a complex (αβ)3 (Fig.  5), but 
they have different absorption spectral maxima, 650 nm 
for allophycocyanin, but 670 nm for allophycocyanin B 
(Lundell & Glazer 1981). Similar to Allophycocyanin, the 
protein portion of allophycocyanin B does not contain 
histidine or tryptophan, but in other respects the two 
proteins are completely different (Glazer & Bryant 1975).

The protein part of C-phycocyanin is a trimeric (αβ)6 
or a hexameric (αβ)3 consisting of an α subunit with a 
molecular weight of 18 kDa and a β subunit of 20 kDa 
(Patil et  al.  2006; Galland-Irmouli et  al.  2000). The only 
phycobilin to which it is attached is phycocyanobilin. The 
data from Dong et al. (2022) confirmed that C-phycocya-
nin has an antioxidant effect, especially its β subunit has a 
protective effect against cell damage induced by hydrogen 
peroxide (Cherdkiatikul & Suwanwong  2014). In recent 
years, C-phycocyanin has become the focus of phycobilin 
research and has been proven to have strong physiologi-
cal activities, such as anti-inflammatory (Blas-Valdivia 
et al. 2022), antioxidant, antibacterial (Pourhajibagher & 
Bahador 2021), etc. (Piovan et al. 2022).

The calculation method of phycocyanin purity is simi-
lar to that of phycoerythrin, which is also obtained by the 
absorbance ratio. The calculation formula is as follows: 

Purity Index =  A620/A280  (A620, Absorbance of the sam-
ple at 620 nm;  A280, Absorbance of the sample at 280 nm) 
(Kuddus et al. 2013). When the ratio of the two reaches 
0.7, it can be regarded as food grade. C-phycocyanin is 
relatively stable at pH 5.0–7.0 and extremely unstable at 
pH 3.0; During the extraction of C-phycocyanin from 
Spirulina spirulina, impurities can also affect the stabil-
ity of the pigment (Zhang et  al.  2021), which increased 
its extraction difficulty to a certain extent. Therefore, 
phycocyanin extraction is usually carried out at pH 7.0 
or 0.5 M  (NH4)2SO4 (Kuddus et  al.  2013). The proper-
ties of C-phycocyanin are similar to phycoerythrin, so 
the extraction and purification are also similar. However, 
C-phycocyanin is usually extracted from Spirulina plat-
ensis because the cell shape of Spirulina platensis is cylin-
drical and spiral, the cell wall is hard, and it is difficult to 
destroy (Yu 2017). Therefore, to efficiently extract C-phy-
cocyanin with high purity, it is necessary to improve the 
cell disruption technology and minimize the generation 
of impurities that can affect its stability during the extrac-
tion process.

Phycobilin also has specific optical properties and 
physiological activities, but it is less stable and more 
expensive to extract than phycobiliprotein, which is why 
phycobiliprotein is more commonly used in industry (Li 
et al. 2019). Phycobiliprotein is a natural and healthy pig-
ment. In addition to its dyeing function and various phys-
iological activities that are beneficial to the human body, 
it is also a high-quality protein rich in various essential 
amino acids required by the human body, with extremely 
high nutritional value (Brown et al. 2014). In recent years, 
more and more physiological activities of phycobilipro-
teins have been explored, expanding its prospects and 
making its application more extensive.

Carotenoids
Carotenoids are a general term for a class of hydro-
carbons and their derivatives (Fig.  6). They are isopre-
noid polymers (tetraterpenoids) containing 40 carbons 
and are the primary source of vitamin A. Algae, higher 
plants, fungi, fish, and other organisms contain a variety 
of carotenoids. More than 850 carotenoids have been 
found in nature, 250 of which come from algae (Christaki 
et al. 2013). Carotenoids are one of the three major pig-
ments in algae and are widely found in most algae. It 
can be found in Chlorophyta, Rhodophyta, Phaeophyta, 
Dinoflagellate, and other photosynthetic algae (Takai-
chi 2011). Carotenoids account for an average of 0.1% of 
the dry weight of algae, but some algae may reach 14% 
under certain growth conditions, such as Dunaliella 
salina, which grows under high salt, light conditions, and 
nutrients (Prasanna et  al.  2007). Some carotenoids are 
found only in algae, or only in large quantities of algae 
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(Takaichi 2011). Carotenoids in algae mainly include two 
major categories, namely carotene, and xanthophyll.

Carotene is a class of unsaturated hydrocarbons with 
the general formula  C40H56, insoluble in water, but sol-
uble in organic solvents such as benzene and acetone 
(Zhang et al. 2022). The carotenoids in algae are mainly 
lycopene, α-carotene, and β-carotene, among which 
β-carotene is the most common (Blatt et  al.  2015). The 
halotolerant green microalgae Dunaliella salina is one 
of the richest algae in β-carotene content found so far, 
with up to 10% dry weight (Pereira et al. 2021). In algae, 
phytoene is converted to lycopene by the action of three 
enzymes: phytoene desaturase, ζ-carotene desaturase, 
and cis-carotene isomerase (Takaichi  2011). Lycopene 
is used as a precursor to producing β-carotene and 
α-carotene after different cyclizations (Blatt et  al. 2015; 
Deng et  al.  2020). The content of the two carotenes 
depends on the content of their related genes and 
enzymes in the algae (Takaichi  2011). The carotenoid 
synthesis pathways in land plants and green algae are 
very similar as they have some homologous genes (Blatt 
et  al.  2015), but some specific synthesis pathways of 
carotenoids in algae are yet to be investigated. Green 
algae are an important new source of carotenoids.

Xanthophyll is the most important part of algal carot-
enoids and is a derivative of carotenoids after oxidation. 
After oxidation, xanthophyll has several more oxygen-
containing groups than carotenes, so it is more stable. 
The sources of lutein are extensive, and various kinds 
of lutein are widely distributed in algae, such as Spir-
ulina platensis, Dunaliella salina, Dinoflagellates, Chlo-
rella spp., Haematococcus lacustris, and Scenedesmus 
spp. (Patel et al. 2022). There are many types of xantho-
phylls in algae, including violaxanthin, antheraxanthin, 

zeaxanthin, neoxanthin, lutein, loroxanthin, diadinoxan-
thin, and fucoxanthin. (Christaki et al. 2013). Lutein, the 
most typical type of xanthophyll, is a polyisoprene com-
pound with a backbone of unsaturated polyene chains 
(Xie et  al.  2021). Multiple double bonds in the carbon 
chain endow lutein with a certain antioxidant capacity. 
Zeaxanthin, which is structurally similar to lutein (Pereira 
et  al.  2021), is an isomer of lutein and one of the most 
common xanthophylls in algae. Humans are unable to 
synthesize zeaxanthin and can only ingest it from food. 
Compared with other plants, zeaxanthin in algae is mostly 
free, which is more beneficial for people to extract and 
utilize (Pereira et al. 2021). Zeaxanthin is one of the most 
important classes of xanthophyll in the human eye, and 
in addition to the antioxidant capacity, it can effectively 
reduce the risk of eye-related diseases such as cataracts. 
Spirulina is not low in zeaxanthin and is now considered 
to be a good source of zeaxanthin (Yu et al. 2012).

Fucoxanthin accounts for about 10% of the total pro-
duction of natural lutein (Pangestuti & Kim  2011). The 
structure of fucoxanthin is rather special because its mol-
ecule has a less common allene bond and a 5,6-monoe-
poxide (Pangestuti & Kim  2011). Among carotenoids, 
Allene (C=C=C), a structure present in natural sub-
stances, is relatively rare, and only about 40 carotenoids 
contain this Allene bond, of which fucoxanthin is the 
most typical (Christaki et al. 2013). Based on its unique 
structure, fucoxanthin can act as an antioxidant under 
hypoxic conditions, a special function that other carot-
enoids do not possess (Nomura et  al.  1997). Another 
special structure in fucoxanthin, Acetylated, is also a 
significant feature of some unique carotenoids in algae. 
Carotenoids containing this structure are mostly found in 
dinoflagellates and other algae. Besides fucoxanthin, such 

Fig. 5 Distribution and quantity of phycobilin in subunits of phycocyanin (Glazer 1977)
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carotenoids include peridinin and dinoxanthin (Takai-
chi  2011). In addition to Allene, a special structure in 
carotenoids is Acetylene (C ≡ C). Similar to the structure 
of Allene, carotenoids with this structure are only found 
in algae, such as alloxanthin, crocoxanthin, and diadinox-
anthin (Takaichi 2011).

As a carotenoid with a unique structure that exists only 
in algae. Fucoxanthin has physiological activities such as 
preventing diabetes (Yang et  al.  2021), anti-inflamma-
tory, anti-cancer (Mohibbullah et  al.  2022), regulating 
lipid metabolism, and preventing obesity (Ye et al. 2022). 
Additionally, it also has certain effects in preventing 
some chronic diseases (Bae et  al.  2020), and has a vast 
application prospect. The price of fucoxanthin can reach 
US $40,000-80,000/kg according to market demand and 
purity (Wang et  al.  2021). According to estimates, the 
market for fucoxanthin could expand to US$120 mil-
lion by the end of this year (Lourenço-Lopes et al. 2020). 
There are already some techniques to synthesize fucox-
anthin in the laboratory, but this operation makes the 
synthesis very expensive, so obtaining fucoxanthin from 
algae by extraction methods is still the most preferred 
way (Zhao, Chen, et al. 2022; Leong et al. 2022).

Carotenoid is a natural substance that cannot be syn-
thesized by the human body but has a positive effect on 
the human body (Fig.  7). It is a natural pigment widely 
distributed in algae, assisting photosynthesis and giv-
ing color to algae. It is also a biomolecule with potent 

physiological activity. Besides the most prominent anti-
oxidant function, it also has the effects of preventing 
obesity (Bonet et  al.  2020), anti-inflammatory (Patel 
et  al.  2022), and so on (Takaichi  2011). There are many 
kinds of carotenoids in algae, widely distributed and high 
in content, and some carotenoids are found only in algae. 
Therefore, algae are an ideal and irreplaceable important 
source of carotenoids in modern industry.

Status of algal pigments
The extraction of algal pigment is the first step of utilization. 
It can be roughly divided into five stages, including macro 
pretreatment, separation of macromolecules and micro-
molecules, extraction, purification, and product generation 
(Galanakis  2012). Traditionally, organic solvents such as 
acetone, ethanol, and chloroform are used to extract algal 
pigments. However, most of the reagents used are toxic or 
expensive and usually take a long time, and the recovery 
rate of pigment has a certain limit (Warkoyo & Saati 2011). 
Therefore, new technologies such as microwave-assisted 
extraction, pulsed electric field, high hydrostatic pressure 
assisted extraction, and ultrasonic assisted extraction have 
been developed to avoid the harm and limitation of tradi-
tional technologies (Poojary et al. 2016). These methods are 
very effective for extracting chlorophyll and carotenoids 
from algae. During the extraction process, the tempera-
ture has a great impact on extraction efficiency (Saravana 
et  al.  2016). When the experimental temperature rises 

Fig. 6 Possible production pathways of carotenoids
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from 46 °F to 122 °F, the extraction amount of carotenoids 
increases significantly (Fratianni et al. 2010). However, when 
the temperature rises further, the loss of some volatile and 
unstable carotenoids that are easy to decompose will be 
affected. Chlorophyll extraction efficiency also showed a 
positive correlation with temperature in the range of 122 °F 
to 158 °F (Putnik et  al.  2016). At the same time, the filtra-
tion membrane with a molecular weight of 10 kDa had a 
good retention effect on algal pigments, and the ultra-
sonic-assisted extraction in the new technology could well 
improve the efficiency of pigment recovery (Zhu et al. 2017).

Synthetic pigments have the advantages of better sta-
bility and a wider selection range, so they still occupy 
the main market of industrial pigments in the past dec-
ades. However, with the pursuit of health and green con-
cepts, the safety controversy of synthetic pigments has 
been mentioned again (Shanmugasundaram & Rujas-
wini  2019), so the advantages of high-quality natural 
pigments from algae have been highlighted. These natu-
ral pigments are considered safer, relatively free of side 
effects (Burrows  2009), and have the biological activ-
ity characteristic of natural compounds. Despite these 
advantages, pigments from algae have not yet been 
widely used because they have some limitations. For 
example, chlorophyll is an unstable magnesium porphy-
rin compound, which is easily decomposed by light, 
acid, base, and oxidant. To make it more widely used, 
food developers typically use chlorophyllide directly 
(Bednarczyk et al. 2021) or stabilize chlorophyll as a good 

natural green pigment by adding sodium caseinate (He 
et al. 2019), adding antioxidants, or replacing its magne-
sium ions with zinc and copper plasma. In addition, the 
extraction rate of pigment is not yet able to fully meet 
the industrial demand, but with the update in technology 
(such as the ultrasonic-assisted technology mentioned 
above), this limit will be broken shortly.

Conclusion
As the importance of natural pigments continues to grow, 
the demand for natural pigments is increasing in various 
industries, and algae, as an economical and widely sourced 
organism, has been used as an essential source of natural 
pigments. The unique pigments in algae, phycobiliprotein, 
fucoxanthin, etc., can also be synthesized in the labora-
tory, but their cost is too expensive compared with direct 
extraction from algae. At present, purification and cell 
wall-breaking technologies are two major technical barri-
ers affecting algal pigment extraction. To further promote 
the commercial application of natural pigments in algae, 
more and more researchers are studying algae with higher 
pigment content or developing more efficient algal pig-
ment extraction methods. At the same time, cracking the 
pigment structure, also provides a new basis for the artifi-
cial synthesis of these pigments. As a class of natural bio-
logical macromolecules with high economic benefits and 
nutritional value, more and more studies have proven their 
various biological and physiological activities.

Fig. 7 The structures of the common carotenoids
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