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Abstract 

Recent advancements in signal processing and computational power have revolutionized computer vision applications 
in diverse industries such as agriculture, food processing, biomedical, and the military. These developments are propel-
ling efforts to automate processes and enhance efficiency. Notably, computational techniques are replacing labor-
intensive manual methods for assessing the maturity indices of fruits and vegetables during critical growth stages.

This review paper focuses on recent advancements in computer vision techniques specifically applied to determine 
the maturity indices of fruits and vegetables within the food processing sector. It highlights successful applications 
of Nuclear Magnetic Resonance (NMR), Near-Infrared Spectroscopy (NIR), thermal imaging, and image scanning. By 
examining these techniques, their underlying principles, and practical feasibility, it offers valuable insights into their 
effectiveness and potential widespread adoption. Additionally, integrating biosensors and AI techniques further 
improves accuracy and efficiency in maturity index determination.

In summary, this review underscores the significant role of computational techniques in advancing maturity index 
assessment and provides insights into their principles and effective utilization. Looking ahead, the future of computer 
vision techniques holds immense potential. Collaborative efforts among experts from various fields will be crucial 
to address challenges, ensure standardization, and safeguard data privacy. Embracing these advancements can lead 
to sustainable practices, optimized resource management, and progress across industries.

Highlights 

1. Recent advancements in signal processing and computation drive interest in computer vision across industries.

2. The review focuses on non-destructive methods in fruits and vegetables.

3. Computational techniques replace manual methods for maturity index determination.
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4. The principles of techniques are highlighted, along with their successful applications.

5. The potential of computation techniques in destructive, non-destructive methods, biosensors, and AI summarized.

Keywords Computational techniques, Biosensors, Machine learning, Maturity index, Fruits and vegetables
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Introduction
Incorporation of fruits and vegetables into our daily 
diet is essential for overall health, providing vital nutri-
ents and contributing to disease prevention (Slavin 
et  al. 2012). However, sourcing high-quality produce 
can be challenging, and ensuring timely delivery to con-
sumers is crucial  (Tata et  al. 2022). The etymology of 
"fruit" and "vegetable" adds an interesting twist to our 
understanding of these dietary components, with Latin 
roots suggesting concepts of enjoyment, growth, and 
flourishing  (Vidal et  al. 2013; Vijayakumar and Vinoth-
kanna 2020). These natural health capsules are rich in 
carbohydrates, minerals, vitamins, and dietary fibers, 
playing a role in the prevention of various diseases like 
cardiovascular conditions and cancer. Scientific studies 
consistently highlight the connection between their con-
sumption and reduced chronic diseases (Magwaza et al. 
2015). Nevertheless, assessing the maturity of fruits and 
vegetables accurately has been a traditional, manual, and 
labor-intensive process, often reliant on subjective judg-
ments by experienced personnel (Prasad et  al. 2018). 
Compared to traditional methods of maturity index 
determination for fruits and vegetables, the integration 
of state-of-the-art computer vision techniques repre-
sents a significant advancement. Traditional approaches 

often rely on manual and labor-intensive assessments, 
which are inherently subjective and time-consuming. 
These methods are prone to errors, lack consistency 
across different evaluations, and can result in delays in 
the supply chain. Moreover, destructive techniques used 
in traditional assessments involve disintegrating the pro-
duce, leading to product loss and waste (Vyawahare et al. 
2013; Karunathilake et al. 2023).

The recent advancement in the field of computer vision 
has revolutionized various industries, with agriculture 
benefiting significantly from computer vision applica-
tions. The evaluation of maturity is a crucial step in the 
supply chain, impacting quality, taste, and marketability 
(Naik et al. 2017). While traditional methods have been 
somewhat effective, they are prone to errors, time-con-
suming, and lack consistency across different evaluations. 
Moreover, destructive techniques used in traditional 
assessments, such as disintegrating the produce, lead to 
product loss and waste (Gupta et al. 2022a). To overcome 
these challenges, researchers and technologists have 
turned to state-of-the-art computer vision approaches, 
leveraging image processing, sensor-based solutions, and 
artificial intelligence (AI) models to automate and opti-
mize the maturity assessment process (Xiao et  al. 2023; 
Dhanya et al. 2022; Cárdenas-Pérez et al. 2017 ).
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AI models play a pivotal role in grading produce 
based on factors like size, shape, and color, signifi-
cantly influencing market acceptability. These models, 
trained on extensive datasets, excel at accurately cat-
egorizing fruits and vegetables, offering scalability and 
adaptability (Xiao et al. 2023). Pre-processing methods, 
including data augmentation, normalization, Principal 
Component Analysis (PCA), and Convolutional Neural 
Networks (CNN), further enhance accuracy and effi-
ciency. Mobile applications powered by AI and neural 
networks have made it user-friendly, allowing consum-
ers to snap a picture and receive instant quality feed-
back (Naranjo-Torres et al. 2020).

Moreover, sensor-based techniques, utilizing emitted 
gases to determine maturity index, offer non-invasive 
and real-time insights into physiological changes, aid-
ing timely harvesting and supply chain management. 
These advancements encompass both destructive tech-
niques, involving high-performance chromatography 
methods, and non-destructive methods like Near-
Infrared (NIR) spectroscopy, Nuclear Magnetic Reso-
nance (NMR), and Raman Spectroscopy-imaging, 
providing rapid and efficient evaluation while minimiz-
ing waste (Gupta et al. 2022a).

As global populations grow and resources dwindle, the 
integration of computer vision in agriculture becomes 
imperative for sustainable practices. Combined with pre-
cision agriculture, computer vision optimizes the entire 
supply chain while reducing environmental impact. 
Compared to traditional methods of maturity index 
determination, computer vision techniques offer greater 
accuracy, efficiency, and scalability, making them a trans-
formative solution in the field of maturity assessment for 
fruits and vegetables. This review aims to provide a com-
prehensive understanding of the principles, applications, 
and future directions of computer vision in this field, 
contributing to the advancement of sustainable and effi-
cient agricultural practices worldwide.

Collection of literature data
To collect data, we conducted a systematic review 
using the Scopus and Google Scholar databases. Ini-
tially, we employed various keywords, resulting in 
varying paper counts for different search queries. Spe-
cifically, we identified 192 papers related to "Fruits 
and vegetables + Biosensors," 114 papers for "Fruits 
and vegetables + Maturity Index," 4 papers for "Fruits 
and vegetables + Biosensors + Machine Learning," 342 
papers for "Fruits and vegetables + Machine Learning," 
714 papers for "Fruits and vegetables + Maturity," and 
59 papers for "Fruits and vegetables + Maturity Detec-
tion using Biosensors" from Scopus. In addition, Google 
Scholar yielded 329 papers for “fruits and vegetable” 

AND “maturity detection,” 9 papers for "Fruits and veg-
etables" AND "maturity detection" AND "Biosensor," 
194 papers for "Fruits and vegetables" AND "maturity 
detection" AND "Machine learning," and 105 papers for 
"Fruits and vegetables" AND "maturity detection" AND 
"Machine learning" AND "Sensor." For a detailed screen-
ing process, please see to Fig. 1.

Maturity indices of fruits and vegetables
Maturity refers to the stage of development when pro-
duce has completed its natural growth and is ready for 
harvest, facilitating proper ripening. However, horti-
cultural maturation is determined based on utilization 
purposes. Specific maturity indices must be developed 
for each commodity due to significant variations. Har-
vesting fruits at an immature stage often leads to their 
inability to ripen, resulting in a firm texture, low flavors, 
and susceptibility to internal breakdown and wooliness 
during extended cold storage (Doerflinger et  al. 2015). 
Maturity indices play a crucial role in determining the 
ideal harvest time, providing marketing flexibility, and 
ensuring acceptable eating quality for consumers. These 
indices consider factors such as chronological age, size, 
shape, surface characteristics, color, firmness, soluble 
solids, abscission layer development, surface morphol-
ogy, tenderness, sugar and starch presence, sweetness 
index (sugar-to-acid ratio), and oil content. Fruits and 
vegetables are classified into physiological maturity when 
development reaches a sufficient stage while attached to 
the plant, and horticultural/commercial maturity when 
they exhibit desired characteristics for consumers (Arefi 
et  al. 2015; Kang et  al. 2008; Khaled et  al. 2015). The 
stages of development, ripening, maturation, and deteri-
oration are predictable for most horticultural food prod-
ucts, varying from early harvest for certain crops like 
sprouts and salad crops, to late harvest for seeds or nut 
crops based on consumer preference (Kurita et al. 2006; 
Kyriacou and Rouphael 2018; Mehinagic et  al. 2004). 
Detailed information on the maturity indices and deter-
mination methods for selected fruits and vegetables is 
provided in Table 1.

Methods of maturity determination
Destructive methods
Measurements of physical, chemical, and sensory prop-
erties of texture and their relationships are essential. 
A sensory test is a method through which the qualities 
of agricultural yields are evaluated based on the senses 
of touch, smell, taste, sight, or hearing. Individuals are 
well-prepared for this task, scoring the instances based 
on specified properties. Furthermore, sensory tests can 
be complemented by physical and chemical measure-
ments (Gupta et al. 2022b). Synopses of these techniques 
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applied to mealiness identification in potatoes and apples 
follow below:

Various tests, including puncture, twist, tensile, 
and Kramer shear tests, as well as recording of chew-
ing sounds, can be conducted to elucidate the textural 
attributes of apples, as assessed by a taste panel. The 
puncture test has been identified as the most effec-
tive method for describing crispness, crunchiness, 
hardness, juiciness, ease of disintegration, and meali-
ness  (Pereira et  al.2018; Surya Prabha and Satheesh 
Kumar 2015). As mentioned earlier, the level of juici-
ness and softness in apples is also related to mealiness. 
Crispiness can serve as a good indicator of softness. 
Several other methods have been employed to assess 
the crispiness of apples by analyzing chewing sounds. 
This involves investigating the relationship by record-
ing the chewing sounds with a microphone placed 
near the mouth and utilizing Fourier transformation to 
record signals. However, this test may not yield highly 
significant results, as chewing speed and techniques 

vary among individuals  (Kurita et  al. 2006; Kyriacou 
and Rouphael 2018; Mehinagic et al. 2004).

In recent years, chewing has been replaced by invented 
devices. In this method, acoustic systems have been inte-
grated into the standard measurement tools for assessing 
the mechanical characteristics of tissues. Consequently, 
a microphone can record the sound produced during 
mechanical tests, such as penetration tests. Hence, it can 
be concluded that the compression test is preferable for 
identifying mealy apples because it simultaneously meas-
ures free juiciness and flesh stiffness  (Vidal et  al. 2013; 
Vijayakumar and Vinothkanna 2020).

Raman spectroscopy can be employed to detect 
changes in the amount of tannin in pomegranate fruits as 
they mature. Tannins are a class of polyphenolic biomol-
ecules with astringent properties, capable of binding and 
precipitating proteins, as well as other organic compo-
nents like amino acids and alkaloids. They are present in 
both fruits and vegetables (Vargas-Murga et al. 2016), and 
their significant health benefits have garnered increased 
interest. Tannins are chromoplasts, which are fat-soluble 

Fig. 1 Study selection for review (PRISMA criteria described in Moher et al. 2014)
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microconstituents with crucial functions, antioxidant 
properties, and physiological effects (Both et  al. 2018). 
Pomegranate fruit (Punica granatum L.) is among the 
most productive fruits, primarily found in tropical and 
subtropical regions, including India, Iran, Afghanistan, 
as well as Mediterranean countries like Morocco, Spain, 
Italy, Turkey, Egypt, and other Middle Eastern countries 
(Khodabakhshian and Emadi 2016). It contains high con-
centrations of tannins, carotenoids, phenolics, flavonoid 
glycosides, flavones, flavonols, and flavoxanthin (Hmid 
et al. 2017). Furthermore, the concentration of these phy-
tochemicals changes as the fruit matures. Pomegranate 
fruit has an astringent flavor in its early stages of devel-
opment, closely linked to increasing tannin content as 
the fruit ripens. Therefore, it is crucial to develop effec-
tive and efficient methods for determining the optimal 
harvesting period for pomegranate fruit to ensure the 
highest quality accepted by consumers. While visible 
spectrophotometry and high-performance liquid chro-
matography (HPLC) have been the standard techniques 
for determining tannin presence in recent years, numer-
ous novel and suitable analytical methods are being 
introduced. Raman spectroscopy is one such method, 
providing quick and in-situ analysis, offering informa-
tion on chemical and structural molecules, and ena-
bling multiple analyses with minimal sample preparation 
(Boyaci et  al. 2015). The International Pharmacopoeia 

and Association of Official Analytical Chemists (AOAC) 
methodologies were employed with minor modifications 
to analyze tannin concentration in pomegranates.

In FT-Raman spectroscopy, cross-sections of cut 
pomegranates undergo analysis within a specific spec-
tral range spanning from 100 to 3000   cm−1. This analy-
sis involves the use of a Bruker FRA106 Raman module 
and Opus 5.5 acquisition software, with laser excita-
tion at 1064  nm. The laser spot employed during the 
examination is approximately 100  μm in size, and the 
power of the laser applied to the pomegranate samples 
is set at approximately 100 mW. To ensure accurate and 
reliable data, the experiment involves obtaining 1000 
scans, each with a spectral resolution of 4   cm−1. This is 
achieved using a Thermo Nicolet NEXUS 870 spectrom-
eter, manufactured by Thermo Electron Corp, based in 
Madison, Wisconsin, U.S.A. By utilizing this specialized 
instrumentation and precise parameters, researchers can 
extract valuable information regarding the molecular 
composition and characteristics of pomegranates, con-
tributing to a deeper understanding of their properties 
and potential applications.

Non‑ destructive methods
The raising awareness of consumers in high quality of 
foods directs the producers to a reliable, rapid, non-
destructive, and noninvasive technique for maturity 

Table 1 Maturity indices of selected fruits and vegetables and their methods to determine (Prasad et al. 2018)

Non‑Destructive Fruits/Vegetables Methods
    Calendar date All fruits

    Size and Shape All fruit, beans, carrot, cucumber, cheery asparagus, 
and cauliflower

Vernier Calliper

    Colour All fruits, tomato, muskmelon, apple, pears, mango, 
papaya and watermelon

Munsell Colour chart, Colourimetry

    Specific Gravity Cherries, Mango Displacement Method (Archimedes principle)

    Optical Properties Apple, Tomato NMR, NIR, Raman Spectroscopy, UV–VIS Spectroscopy 
and Thermal Imaging

    Surface Morphology Grape (cuticle formation), banana, and litchi Magnetic Resonance Imaging (MRI) and Surface 
Electron Microscope (SEM)

Destructive Method
    TSS All fruits, tomatoes, and melons Hand held Refractometer, Abbey’s Refractometer

    Firmness/Texture Pome and stone fruits, beans, lettuce, and muskmelon Penetrometer, Universal Texture Analyzer, Pressure 
Gauge

    Juice Content Citrus fruits Volume

    Titrable Acidity Pomegranate, citrus fruits, papaya, and kiwifruit Analytical Chemistry

    Oil Content Avocado Soxhlet Apparatus

    Moisture content All fruits Karl fischer method and Conventional Hot Air Oven

    Volatile compounds Naringin, 
Limonene (Bitterness)  Tannin (Astrin-
gency)

Citrus fruits Persimmon and dates GCMS, LCMS, HPLC, Spectrophotometer

    Sugar Pome, stone fruits, and grape Alcohol Test, Phenol -sulphuric acid for reducing sugar

    Respiration Rate (Ethylene Content Apple and pears Biosenser connected tom respirator chamber
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determination, especially during harvesting and pack-
aging processes. Therefore, in recent years, the appli-
cation of nondestructive, noninvasive, and noncontact 
methods and designing new instruments for food qual-
ity determination have been the focus of interest by 
researchers (Yahaya et al.2014; Yang et al. 2021). These 
techniques are becoming more favored and practical 
compared to destructive techniques as nondestruc-
tive methods allow the measurement and analysis of 
individual fruit, reduce waste, and permit repeated 
measurements on the same item (Arendse et al. 2018). 
Different quality parameters have been determined 
in several agricultural products by a variety of non-
destructive methods. These methods are based on 
optical, mechanical, electrical, and electromagnet-
icmeasurements (Pourkhak et  al. 2017; Mireei et  al. 
2015). Nuclear magnetic resonance imaging (NMRI) 
(Suchanek et al. 2017; Zhang et al. 2012), Raman imag-
ing (Munera et  al  . 2017), ultraviolet (UV), NIR, mid-
infrared (MIR), electronic nose (e-nose) (Srivastava and 
Sadistap 2018), ultrasonic technique (Ikeda et al. 2015), 
and machine vision (Hitchman et  al. 2016) are some 
widely used nondestructive methods.  Non-destructive 
fruit ripeness assessment offers numerous advantages 
over conventional destructive procedures, including 
high throughput evaluation, concurrent multiple meas-
urements, and real-time decision-making capabili-
ties. As fruits ripen, they undergo complex phenotypic 
changes, transitioning from green, hard, and immature 
to more colorful, softer, sweeter, and aromatic states 
(Uluışık et al. 2018).

Destructive measures, due to the large number of 
samples needed, are time-consuming and cannot simul-
taneously evaluate all quality parameters in the field. 
Consequently, the need for simple and representative 
non-destructive measurements arises to determine fruit 
ripeness effectively (Vanoli et  al. 2020). In this context, 
several works examine modeling techniques for predict-
ing the ideal harvest time and non-destructive methods 
for assessing fruit freshness  (Zaborowicz et  al. 2017). 
These predictions are based on spectroscopic and/or 
imaging methods that quantify the color and/or spec-
tral characteristics of fruits, reflecting changes in their 
molecular makeup during ripening. The functions and 
applications of non-destructive method techniques 
are discussed in Table  2, providing a comprehensive 
understanding of the strengths and limitations of both 
destructive and non-destructive approaches. By critically 
examining the latest research and technological advance-
ments in this field, we aimed to contribute to the ongoing 
development and implementation of innovative practices 
in the fruit industry.

Visible / Near Infrared Spectroscopy (NIRS)
NIRS is founded on the fundamental principles of spectral 
absorption and reflection, where near-infrared light inter-
acts with the chemical composition of fruits. This inter-
action is governed by the vibrations of chemical bonds 
in organic molecules, with each compound exhibiting 
characteristic absorption bands in the NIR spectrum. The 
heart of NIRS lies in its calibration models, constructed 
through the relationship between known chemical com-
positions and measured spectral data during a training 
process. The electromagnetic spectrum’s range from 780 
to 2500 nm is covered by NIRS (Gupta et al. 2022a). Uti-
lizing mathematical algorithms, NIRS quantitatively ana-
lyzes fruit samples, providing rapid and non-destructive 
estimations of critical parameters like sugar content and 
moisture levels. This non-invasive nature of NIRS, cou-
pled with its ability to reveal the chemical makeup of 
fruits, makes it an invaluable tool in fruit maturity estima-
tion, ensuring the quality and integrity of fruit produce 
while supporting efficient agricultural and food industry 
practices (Pandiselvam et al. 2022).

NIRS finds wide-ranging applications in the realm of 
maturity determination due to its non-destructive and 
rapid analytical capabilities. One primary application 
lies in the assessment of fruit ripeness. NIRS can accu-
rately determine key indicators of maturity, such as sugar 
content, acidity, and moisture levels, without the need 
for invasive sampling. This information is invaluable for 
growers and producers as it helps them determine the 
optimal harvest time, ensuring fruits reach their peak 
flavor and nutritional value. Moreover, NIRS is instru-
mental in quality control during post-harvest handling 
and processing. It enables the quick sorting and grading 
of fruits based on their maturity, allowing for the segre-
gation of ripe fruits from those that need more time to 
ripen. This not only reduces food waste but also enhances 
the efficiency of supply chains. Additionally, NIRS facili-
tates the monitoring of fruit quality during storage and 
transportation, helping to prevent spoilage and main-
tain product integrity. In sum, the application of NIRS in 
maturity determination empowers the agricultural and 
food industries to make informed decisions that improve 
both product quality and overall operational efficiency 
(Pandiselvam et al. 2022).

It helps in fruit sorting and grading and is more suited 
to practical application. This technique measures the skin 
tone of fruits like bananas, apples, tomatoes, and man-
goes to assess fruit maturity (Fig.  2). The skin colour is 
influenced by how much chlorophyll is found there. The 
changes in pigmentation can be used to gauge the matu-
rity of fruits. As the fruit ripens the chlorophyll content 
starts decreasing (Chauhan et al. 2017). Ravindran et al. 
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(2015) had used NIR approach to test fruit firmness and 
find output whether if there are any obvious flaws. Using 
this method, it is possible to test soluble solid content, 
dry matter, hygroscopicity, hardness, sugar content, acid-
ity, etc. without the need for any special equipment.

Lan et  al. (2020) conducted a study on apple quality, 
utilizing spectral details to predict various parameters, 
including viscosity, cell wall content, dry matter, soluble 
solids content (SSC), and puree product titratable acid-
ity (TA) (Lan et  al. 2020). The spectral measurements 
encompassed a range of 800–2,500  nm and employed 
an automatic sampling wheel with 18 different positions. 
However, it was noted that methods utilizing six opti-
cal fibers or manual positioning appeared to be more 
realistic and accurate, possibly due to the consistency of 
the sampling wheel setup. Notably, SSC determination 
yielded a high  R2 value of 0.92, underscoring the meth-
od’s effectiveness in assessing puree product homogene-
ity (Lan et al. 2020).

Further investigations into NIRS applications 
revealed its efficacy in predicting parameters like 
soluble solids, glucose, malic acid, and dry matter in 
calçot onions and apple purees (Lan et  al. 2021; Sans 
et  al. 2018). These studies highlighted the success-
ful use of spectral analysis for quality evaluation of 
purees. Khodabakhshian et  al. extended NIRS analy-
sis to pomegranates, employing both transmittance 
and reflectance modes in the 400–1,100 nm range, and 
employed pretreatments such as standard normal vari-
ate (SNV) and multiplicative scatter correction (MSC) 
to account for morphological variations in pomegran-
ate varieties (Khodabakhshian et al. 2019).

Hu et al. (2019) conducted an extensive study on SSC 
determination in Hami melons, exploring various meas-
uring configurations, variable selection algorithms, and 
classification models. The calyx model emerged as the 

most effective, likely due to higher SSC content in the 
calyx region. This underscores the importance of pre-
cise measurement location for accurate predictions. A 
similar study on apples incorporated multiple orienta-
tions, with the stem-calyx vertical orientation with the 
stem upward proving optimal (Xia et al. 2019). Various 
combinations of variable selections and prediction algo-
rithms indicated that the Monte Carlo–uninformative 
variable elimination–successive projections algorithm 
(MC-UVE-SPA) achieved the best results for SSC deter-
mination (Rp > 0.8) (Hu et  al. 2019). Xia et  al. (2019) 
found that competitive adaptive reweighted sampling-
subwindow permutation analysis-partial least square 
(CARS-SPA-PLS) performed well for SSC prediction 
in apples, with a low root mean square error of predic-
tion (RMSEP) of < 0.573° brix. They also emphasized the 
importance of determining effective wavelengths from a 
global model to mitigate orientation effects.

Texture assessment, a critical factor in evaluating 
agricultural product quality, involves parameters like 
firmness and penetrometer readings (Camps and Gilli 
2017; Sharma and Sirisoomboon 2019). Some studies 
have explored additional parameters such as fracture 
force, hardness, and compressive energy (Mohammadi-
Moghaddam et  al. 2018). These parameters can dis-
tinguish between varieties, making them essential for 
quality evaluation. Firmness, for instance, correlates with 
maturity and oil content in olives (Cirilli et  al. 2016). 
Prediction of firmness, although complex, has yielded 
promising results, such as  R2 values at peak regions using 
PLS regression in olives (Cirilli et al. 2016) and a high  R2 
value of 0.966 in cherry tomatoes using an extreme learn-
ing machine algorithm (Feng et  al. 2019). Compression 
and penetrometer tests were performed concurrently on 
tomatoes, with the compression test demonstrating supe-
rior prediction performance  (R2 = 0.85–0.97) (Camps 

Fig. 2 Measurement of plum fruit quality using VIS/NIR  (Source: Posom 2020)
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and Gilli 2017). Additionally, a study on juicy stone fruits 
emphasized the significance of the compression test as 
the fruit matures (Labaky et al. 2020). Clustering of data 
may contribute to improved  R2 values, although RMSE 
values may exhibit less variation (Camps and Gilli 2017).

The integration of NIRS in fruit maturity testing has 
laid a solid foundation for future advancements. To fur-
ther enhance its capabilities, multi-sensor fusion with 
other sensing technologies, advanced machine learn-
ing algorithms, and the development of portable NIRS 
devices for field applications are critical directions. 
Standardization and calibration across diverse fruit 
types, the implementation of online monitoring sys-
tems, and the creation of user-friendly consumer appli-
cations can ensure the widespread adoption of NIRS. 
Additionally, addressing environmental considerations 
and promoting sustainability in NIRS deployment will 
be essential. These future directions collectively hold 
the potential to not only refine fruit maturity assessment 
but also empower growers, producers, and consumers to 
make informed decisions, reduce food waste, and con-
tribute to more efficient and sustainable fruit production 
and consumption practices.

Nuclear Magnetic Resonance Techniques (NMR)
NMR spectroscopy, NMR relaxometry, and magnetic 
resonance imaging are all components of the nuclear 
magnetic resonance imaging (MRI). NMR spectros-
copy operates on the principles of nuclear spin and 
magnetic resonance. In the context of fruit maturity 
testing, the principle involves the interaction of hydro-
gen nuclei (protons) within the water molecules pre-
sent in the fruit tissue with a strong magnetic field and 
radiofrequency pulses  (Chauhan and Singh 2012; Surya 
Kiran and Niranjana 2019). Protons possess a magnetic 
moment, and when placed in a magnetic field, they align 
with or against the field. When radiofrequency pulses are 
applied, they cause these protons to temporarily devi-
ate from their alignment. As these protons return to 
their equilibrium state, they emit radiofrequency signals, 
which are detected and analyzed. The NMR instrument 
measures the time it takes for these signals to decay, 
known as relaxation times (T1 and T2), and the intensity 
of the signals. These relaxation times and signal intensi-
ties provide information about the physical and chemical 
properties of the fruit, including water content, mobility, 
and molecular interactions (Ebrahimnejad et al. 2018).

This method can be used to determine a sample’s water 
and oil content. Although the pace of measurement is 
slow, MRI may produce high resolution images of the 
internal architecture of intact fruit. The assessment of 
water and oil is impacted by the presence of other dietary 
elements in the sample. The ice crystals created in food 

limit the spatially situated NMR signals, making them 
useful in determining the freeze damage caused during 
storage (Newton et al. 2017; Yodh 2017).

NMR spectroscopy is widely employed for assessing 
fruit maturity by determining key parameters without 
causing sample damage. One critical parameter in fruit 
maturity assessment is water content, which changes as 
fruits ripen. NMR enables precise and non-destructive 
measurements of water content variations during rip-
ening stages. Additionally, NMR facilitates the meas-
urement of sugar content and soluble solids, including 
sugars and organic acids, which tend to increase as fruits 
mature. This information serves as a valuable indicator of 
maturity. Furthermore, NMR can assess fruit texture and 
firmness by analyzing alterations in the molecular struc-
ture and mobility of water in fruit tissues, correlating with 
changes in fruit texture. This aids in pinpointing the opti-
mal harvest time. Importantly, NMR’s non-destructive 
nature preserves sample integrity, making it suitable for 
quality control and research applications where destruc-
tive methods are unsuitable. It can seamlessly integrate 
into quality control and sorting systems, ensuring the 
selection of ripe, high-quality fruits for distribution, ulti-
mately reducing food waste and elevating product quality 
(Nicolai et al. 2007; Borba et al. 2021).

In a similar study, the authors aimed to explore the 
potential applications of Low-Field Nuclear Magnetic 
Resonance (LF-NMR) and MRI techniques in the study 
of water dynamics and the measurement of quality 
parameters in fruits and vegetables. The methodology 
involved an extensive literature review to gather insights 
from existing research, followed by conducting LF-NMR 
and MRI experiments on various fruit and vegetable 
samples. The acquired data allowed for the analysis of 
water dynamics within these samples, revealing correla-
tions between relaxation times and physiological changes 
during ripening and aging. Furthermore, LF-NMR and 
MRI demonstrated their capability to measure critical 
quality parameters, such as moisture content, sugar lev-
els, texture, and firmness, offering non-destructive and 
accurate assessments. This study concluded that LF-
NMR and MRI hold substantial potential for enhancing 
the understanding of water behavior within agricultural 
produce and improving the assessment of their quality. 
Future objectives include refining methodologies, diver-
sifying applications, integrating artificial intelligence, and 
promoting industry adoption of these technologies for 
more efficient quality control in the agricultural and food 
sectors (Kamal et al. 2019).

In summary, NMR spectroscopy leverages nuclear spin 
and magnetic resonance principles to provide insight-
ful information about fruit maturity. Its non-destructive 
capabilities and proficiency in measuring water content, 
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sugar levels, and fruit texture position it as a powerful 
tool for fruit maturity testing and quality control within 
the agricultural and food industries.

Time‑resolved Reflectance Spectrometry (TRS)
TRS is founded on the principle of measuring the time 
delay between a short light pulse’s emission and the 
detection of the reflected or transmitted light. This delay, 
known as the time-of-flight, is influenced by the interac-
tion of light with the internal structure of fruit samples. 
TRS operates based on the concept that different tis-
sue structures and compositions within fruits will scat-
ter light in unique ways, affecting the time it takes for 
light to travel through the sample. By analyzing these 
time-resolved measurements, TRS can provide valuable 
insights into the internal properties of fruits, including 
water content, pigmentation, and tissue density, which 
are critical indicators of fruit maturity (Zerbini et  al. 
2009; Vanoli et al. 2011; Rizzolo et al. 2015).

In the context of fruit maturity assessment, TRS has 
diverse applications. Firstly, it can be utilized to non-
invasively determine water content, a parameter that 
changes during fruit ripening. As fruits mature, water 
content often diminishes due to various physiological 
processes (Rizzolo et al. 2015). TRS can precisely quan-
tify these changes, aiding in the accurate assessment of 
fruit ripeness. Additionally, TRS can provide informa-
tion about pigment composition and concentration 
within fruits, helping to assess attributes like color devel-
opment and anthocyanin levels, which are indicative of 
maturity (Vanoli et  al. 2011). Furthermore, TRS can be 
used to evaluate the density and structural properties 
of fruit tissues, such as cell wall integrity and firmness, 
offering valuable data for assessing the overall quality 
and ripeness of fruits. In summary, TRS is a powerful 
optical technique that can non-destructively assess vari-
ous parameters related to fruit maturity, contributing to 
improved fruit quality and efficient harvesting practices 
(Zerbini et al. 2006).

In a study conducted by Zerbini et  al. (2006), the 
research aimed to assess the potential of TRS as a non-
destructive tool for evaluating nectarine maturity at 
harvest and developing a predictive model for nectarine 
softening during storage. The methodology involved TRS 
measurements on nectarine samples at various ripeness 
stages during the harvest season. Key parameters such 
as water content, pigment composition, and tissue den-
sity were analyzed using TRS. These measurements were 
then correlated with traditional destructive methods and 
sensory evaluations to establish a comprehensive data-
set for model development. The observations demon-
strated that TRS accurately assessed nectarine maturity 
at harvest and predicted their softening behavior during 

storage. This research concluded that TRS holds signifi-
cant promise as a valuable tool for optimizing harvest 
timing and post-harvest handling in the fruit industry. 
Future objectives include refining predictive models, 
expanding application to other fruit varieties, and inte-
grating TRS into commercial fruit management practices 
to enhance quality and reduce waste.

Similarly, Zerbini et  al. (2009) aimed to investigate 
the practical application of TRS as a management tool 
within the fruit supply chain, specifically in an export 
trial involving nectarines. To achieve this, a comprehen-
sive methodology was implemented. Nectarine samples 
at different ripeness stages underwent TRS analysis to 
assess parameters like water content, pigment composi-
tion, and tissue density. These TRS measurements were 
taken at critical points along the export supply chain, 
including pre-harvest, post-harvest, and transporta-
tion. Observations revealed that TRS provided real-time 
insights into fruit maturity, facilitating precise timing for 
harvest and post-harvest decisions. The study concluded 
that TRS could significantly enhance fruit quality and 
ripeness management in the export supply chain. Future 
objectives include further refining TRS methodologies 
for a wider range of fruit varieties and integrating real-
time data analysis to optimize fruit quality and minimize 
losses during export (Zerbini et al. 2009).

Recently, a study was undertaken to explore the non-
destructive determination of ripeness in melon fruit uti-
lizing TRS. The methodology involved conducting TRS 
measurements on melon samples at various stages of 
ripeness. Key optical parameters, including fluorescence 
decay times and reflectance spectra, were collected and 
analyzed using TRS techniques. These measurements 
were then correlated with traditional destructive meth-
ods, such as firmness and soluble solid content assess-
ments, to establish a comprehensive dataset for model 
development. The observations indicated a strong cor-
relation between TRS-derived optical parameters and 
melon fruit ripeness. The study concluded that TRS 
could effectively serve as a non-destructive tool for deter-
mining ripeness in melon fruit. Future objectives include 
refining the TRS models, expanding the application to 
different melon varieties, and integrating TRS into qual-
ity control processes to enhance fruit quality assessment 
and reduce waste (Vanoli et al. 2023).

Despite its promise, TRS also presents challenges. It 
requires specialized equipment and expertise, making its 
implementation costly and complex. Additionally, TRS 
models may need further refinement to accommodate a 
broader range of fruit varieties and conditions, including 
different ripening patterns and textures.

Looking ahead, the future scope of TRS in fruit 
maturity assessment is promising. Refinement of TRS 
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methodologies, integration of real-time data analysis, 
and its application to a wider range of fruit varieties are 
essential goals. By addressing these challenges and objec-
tives, TRS has the potential to revolutionize fruit qual-
ity management in the agricultural and food industries, 
leading to improved fruit quality, reduced waste, and 
enhanced consumer satisfaction.

X‑ray
X-ray radiography is a non-destructive technology that 
offers valuable insights into the internal properties of 
fruits by displaying density differences using grayscale 
levels. This enables the identification of healthy fruits and 
those with pest damages while classifying them without 
the need for destructive sampling (Abdshaib et al. 2017; 
Diels et  al. 2017). The varying densities inside fruits, 
influenced by factors such as water content, hard tissues, 
insect pest holes, hollowness, and corruption, are rep-
resented by different grayscale levels. X-ray radiography 
has found practical applications in fruit quality classifi-
cation and disease detection, particularly in citrus fruits. 
Additionally, it has been utilized for sorting mature let-
tuce heads, assessing mango and tomato ripening based 
on tomography, and detecting surface defects in fruits 
using appearance images (Lenker et  al. 1971; Barcelon 
et al. 2000; Brecht et al. 1991; Hernández-Sánchez et al. 
2016). Furthermore, X-ray radiography plays a role in 
fruit quarantine by capturing and analyzing fluoroscopy 
images to identify problematic areas (Iqbal et  al. 2018; 
Jiang et  al. 2008). However, it is important to note that 
while X-ray radiography can provide valuable qualita-
tive analyses of fruit surfaces and internal structures, it 
primarily yields 2D and 3D images, unlike x-ray com-
puted tomography (CT scanning) (Chauhan et al. 2017). 
With its ability to detect variations in density and water 
content, X-ray radiography holds promise for assessing 
fruit maturity and identifying internal flaws associated 
with physiological anomalies, ultimately contributing to 
enhanced fruit quality and reduced waste in the agricul-
tural and food industries. The objective of the study by 
Hsiao et al. (2021) was to assess and investigate the fea-
sibility of using X-ray imaging and information visualiza-
tion for the ripeness assessment of lemons (Fig.  3). The 
methodology involved acquiring X-ray images of lemon 
samples at different ripeness stages and employing image 
processing techniques to extract relevant information. 
This information, including internal features and density 
variations within the lemons, was visualized and analyzed 
to determine the correlation between X-ray images and 
lemon ripeness. The results indicated that X-ray imaging 
combined with information visualization showed prom-
ise as a non-destructive method for assessing lemon rip-
ening, with the capability to distinguish between different 

ripeness stages based on internal characteristics. How-
ever, a drawback of the study was the limited sample size, 
and future directions may involve expanding the research 
to a larger dataset, refining the image analysis algorithms, 
and exploring the application of this approach to other 
fruits for broader implications in the fruit industry.

Acoustic Impulse Response Method (AIRM)
The AIRM is based on the principle of analyzing sound 
wave propagation through fruits to assess their inter-
nal properties, which can provide valuable information 
about fruit maturity. This non-destructive technique 
involves sending an acoustic impulse or pulse, typically 
in the form of a brief sound wave, into the fruit (Yama-
moto et al. 1980). As the sound wave travels through the 
fruit, it interacts with the internal structures and prop-
erties, including density, moisture content, and texture. 
These interactions cause the sound wave to be reflected 
or refracted in different ways, resulting in a unique 
acoustic response or signature. By analyzing this impulse 
response, it is possible to gain insights into the fruit’s 
internal characteristics, such as ripeness, firmness, and 
moisture content. The AIRM finds applications in vari-
ous aspects of fruit maturity assessment. One primary 
application is the determination of fruit firmness, which 
is a crucial indicator of maturity and quality. As fruits 
ripen, their firmness often changes due to alterations in 
cell structure and water content. The method can accu-
rately measure this parameter by analyzing the speed and 
attenuation of sound waves passing through the fruit. 
Additionally, the method can be used to assess moisture 
content in fruits, which is another key factor in deter-
mining maturity. By evaluating the acoustic properties 
related to water content, it becomes possible to monitor 
the fruit’s moisture levels as it ripens.

In the acoustic impulse response method utilized by 
Fathizadeh et al. (2019) and Yamamoto et al. (1980), a ball 
weighing 2  g and 8.5  g, respectively, is employed as an 
impactor. When this ball impacts the fruit, the resulting 
sound is captured by a microphone. Subsequently, Fou-
rier transformation is applied to the captured sound data, 
allowing for the identification of the largest resonant 
frequency. This prominent frequency is then utilized to 
calculate the firmness index, a key parameter indicative 
of fruit quality. The schematic representation of the test 
apparatus used for implementing the acoustic impulse 
response method, illustrating the setup and components 
involved in this non-destructive technique for assessing 
fruit firmness.

The acoustic impulse resonance frequency (AIF) tech-
nique utilises the natural frequencies of the whole fruit, 
which are obtained by recording the sound made by strik-
ing the fruit, and then applying a Fourier transformation 
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to the recorded signal (Muramatsu et al. 2015). The fre-
quency and mass of the fruit can be used to compute the 
stiffness factor for spherical fruit. This method includes 
measuring the resonance frequency that fruits produce, 
which changes as the fruits grow. Assessing the inte-
rior quality and ripeness of fruits involves calculating 
the impact response the fruit produces when a force is 
applied. The outcomes are delicate and rely on different 
characteristics (Chauhan et al. 2017).

Similarly, a non-destructive method for assessing the 
internal quality of fruits, specifically apples and water-
melons, using the acoustic impulse response technique. 
The methodology involved subjecting intact fruits to 
an acoustic impulse and measuring the resulting vibra-
tional response. By analyzing the natural frequency 
derived from these acoustic responses, the research-
ers aimed to correlate this parameter with the inter-
nal quality attributes of the fruits. The results indicated 
that the natural frequency obtained through the acous-
tic impulse response method was a promising indicator 
of fruit quality. It demonstrated sensitivity to variations 
in fruit texture and internal attributes, such as firmness 
and juiciness. However, a drawback of the study may have 
been the need for specialized equipment and calibration 

procedures, which could limit its practical application. 
Future directions in this research could involve further 
refinement of the method, including the development of 
user-friendly tools and protocols for wider implemen-
tation in the fruit industry. Additionally, exploring the 
method’s applicability to a broader range of fruit types 
and sizes would enhance its utility in non-destructive 
quality assessment (Yamamoto et al. 1980).

Fathizadeh et  al. (2020) developed a nondestructive 
method for predicting the firmness of apple fruits using 
acoustic vibration response, as firmness is a crucial qual-
ity parameter in apples. The methodology involved sam-
ple preparation with apples of varying ripeness levels, 
employing an acoustic vibration system to induce sur-
face vibrations on the fruits and recording their acous-
tic responses using sensors. Data analysis comprised 
extracting features like frequency and amplitude from the 
acoustic data. A calibration model was constructed, cor-
relating these acoustic features with reference firmness 
values obtained through traditional destructive testing. 
Validation confirmed the model’s potential in accurately 
predicting firmness nondestructively. While promis-
ing, this approach should address sample variability and 
undergo further validation on a broader range of apple 

Fig. 3 X-ray radiographic images of (1) fresh, (2) mature, and (3) overripe lemons acquired at A median-plane and B axial-plane of the lemons.  
(Source: Hsiao et al. 2021)
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samples. Future directions may focus on enhancing accu-
racy, real-time applications, multimodal approaches, and 
automation, offering significant improvements in fruit 
quality assessment practices.

Ultrasonic
The evaluation of fruit ripeness and maturity is para-
mount for optimizing harvesting, transportation-mar-
keting, and consumption (Chauhan et al. 2017; Magwaza 
and Tesfay 2015). However, ripe fruit is highly susceptible 
to mechanical damage, microbiological decay, and physi-
ological deterioration. In this context, the application 
of ultrasonic technology emerges as a promising non-
destructive solution (Cao et  al. 2010). Ultrasonic meth-
ods offer several advantages, such as cost-effectiveness, 
robustness, reliability, and safety for fruits, making them 
a preferred choice among nondestructive techniques 
(Kim et al. 2009; Morrison et al. 2014; Valente et al. 2013; 
Lee et al. 2013).

Ultrasonic measurement relies on changes in the 
attenuation and velocity of ultrasonic waves, which are 
sound waves with frequencies higher than the human 
hearing limit. These waves interact with matter through 
absorption and scattering, and these interactions can be 
correlated with internal fruit factors (Awad et  al. 2012). 
Parameters like acidity, viscosity, and sugar content can 
be evaluated through ultrasonic methods, with velocity 
and attenuation being dependent on the physical prop-
erties of the fruit and the frequency of sound propaga-
tion within the fruit (Mizrach 2004; Mizrach 2008; Kuo 
et al. 2008). While ultrasonic methods have proven fast, 
accurate, and nondestructive for fruit quality evaluation, 
existing ultrasonic systems have limitations, particularly 
in non-laboratory and field applications. Furthermore, 
these systems are typically designed for specific fruit spe-
cies, lacking versatility. To address these issues, a cus-
tom-designed ultrasonic system was developed, enabling 
users to adjust frequency, amplitude, pulse repetition 
frequency, and the number of pulses in a burst. Notably, 
this system offers a broader frequency range from 10 kHz 
to 10 MHz, in contrast to market devices that often start 
at 500 kHz. This flexibility is crucial for monitoring fruit 
quality in various scenarios, including picking, storing, 
packaging sites, as well as laboratory-based applications.

Nevertheless, nondestructive ultrasonic methods 
alone are insufficient for comprehensive fruit qual-
ity assessment. To obtain a holistic understanding, it’s 
essential to acquire physical characteristics such as size, 
shape, and volume. By combining a custom-designed 
ultrasonic system with a non-contact physical meas-
urement unit, superior fruit quality assessment can 
be achieved. Yildiz et al. (2019) aimed to create a com-
plete nondestructive quality evaluation system using (a) 

ultrasonic testing and (b) volume estimation through 
automatic machine vision techniques. This approach 
involved programmable ultrasonic components, piezo-
electric probes, an oscilloscope, and computer-based 
systems for ultrasonic testing (Fig.  4). Additionally, a 
machine vision system captured multiple fruit images 
for volume calculation. This method demonstrated the 
potential for highly accurate quality assessment (Yildiz 
et  al. 2019). Mizrach (2000) developed a nondestruc-
tive ultrasonic measurement system to assess transmis-
sion parameters related to the maturity, firmness, and 
quality of avocado and mango fruits. Low-frequency 
probes measured ultrasonic signal attenuation, which 
changed as the fruit ripened and softened. Statistical 
analysis revealed quantitative relations between ultra-
sonic parameters and fruit quality attributes, such as 
oil content, dry weight percentage, and firmness. These 
findings open avenues for nondestructive assessment 
of fruit maturity and firmness, eliminating the need for 
invasive methods (Mizach, 2000). In another study, the 
characteristics of fruit tissue and its maturity stage were 
determined by measuring the attenuation coefficient and 
wave velocity of ultrasonic waves as they passed through 
the fruit. The study focused on Tabrizi variety peaches 
at different ripeness stages. Results showed strong corre-
lations between attenuation coefficient and hardness, as 
well as wave velocity and pH and acidity. This research 
provides valuable insights into nondestructive methods 
for assessing fruit quality and maturity (Abolghasemi 
et  al.2009). In conclusion, non-destructive ultrasonic 
methods, when combined with physical measurements 
and advanced technologies, offer a promising approach 
for evaluating fruit quality and maturity. These tech-
niques not only enhance our understanding of fruit char-
acteristics but also provide practical solutions for the 
industry’s needs, from harvesting to storage and beyond.

Image processing
Color perception is a critical sensory attribute influ-
encing consumer acceptance of food products. Ensur-
ing consistent color and appearance in food items relies 
on accurate color measurement techniques. Recent 
advancements in computer vision technology, driven 
by camera-computer systems, have enabled automated 
detection systems for agricultural and food products. 
Computer vision involves image capture, processing, 
and analysis, providing an objective and non-destruc-
tive approach to assess visual quality in food prod-
ucts. Owing to hardware and software advancements, 
cost-effective solutions have emerged, leading to the 
increased adoption of computer vision systems within 
the food industry. These systems offer non-destruc-
tive and cost-efficient means for sorting and grading 
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agricultural and food products during processing and for 
commercial applications (Xiao et al. 2023).

The process of quality inspection for fruits and veg-
etables using image processing techniques generally 
comprises five steps: Image acquisition, Pre-processing, 
Image segmentation, Feature extraction, and Classifica-
tion (Fig.  5). Image acquisition is a critical initial step, 
as the quality of the acquired image significantly affects 
subsequent processing outcomes. Various tools, includ-
ing cameras, ultrasound, MRI, electrical tomography, 
and computed tomography (CT), are employed for image 
acquisition. Digital images are generated using com-
plementary metal oxide semiconductor (CMOS) and 
charged coupled device (CCD) image sensors (Bhargava 
et al. 2021).

A typical computer vision system consists of five 
fundamental components: lighting, an image capture 
board (digitizer or frame grabber), a camera, computer 
hardware, and software. In fruit and vegetable analy-
sis, lighting systems are categorized as front and back 
lighting. Front lighting assesses surface quality attrib-
utes such as color, texture, and skin defects, while back 
lighting is utilized for evaluating boundary quality 
attributes like size and shape. Conventional, spectral, 
and hyperspectral computer vision systems have been 
extensively studied for quality analysis of food and 
agricultural products (Bhargava et al. 2021).

Color is a vital factor impacting consumers’ deci-
sions regarding fruits and vegetables. It indirectly 
reflects quality attributes such as freshness, desirabil-
ity, variety, maturity, and safety, influenced by physical, 
chemical, biochemical, and microbial changes occur-
ring during growth, ripening, and postharvest pro-
cessing. Color features are essential for image retrieval 
and indexing, with the RGB color space, hyperspectral 

imaging (HSI) color space, and CIE-LAB color space 
being commonly used. Various color features, includ-
ing color correlogram, color coherence vector, color 
moments, and color histogram, have been proposed 
for color extraction. Among these, color moments, 
such as mean, standard deviation, and skewness, are 
widely utilized. While the RGB color model is popular 
for image capture, it lacks linearity with human vision 
and requires transformation techniques to standard-
ize values. In contrast, the HSI color space is preferred 
for color-based algorithms, closely resembling human 
perception (Kuswandi et al. 2011; Gupta et al. 2022a). 
However, it is less suitable for evaluating color trans-
formations during processing. The CIE-LAB color 
space, designed as a device-independent model, offers 
cognitive uniformity, representing color differences 
perceived by humans as Euclidean distances in the 
CIE-LAB space. This makes it a suitable method for 
assessing object color (Table 3).

Hyperspectral imaging technique
Hyperspectral imaging technique was used to classify 
the background and growth stages of blueberry fruit. 
Four information theory-based band selection meth-
ods alongwith machine and deep learning were applied 
to assess the performance of the selected bands by 
the four methods. The selected bands attain 88% and 
higher accuracies of classification. Therefore, the matu-
rity stages of blueberry fruit can be detected using the 
band selection methods, which are capable of reducing 
the volume of the hyperspectral data and constructing 
a multispectral imaging system (Yang et  al. 2014). A 
similar study was investigated by Munera et  al. (2017), 
where the hyperspectral images of unripe, mid-ripe, 
and ripe strawberries were used to extract spectral 

Fig. 4 The schematic view of the ultrasonic measurement experimental setup.  (Source: Yildiz et al. 2019)



Page 15 of 40Anjali et al. Food Production, Processing and Nutrition            (2024) 6:56  

Fig. 5 A classical computer vision system.  (Source: Wei et al. 2017)

Table 3 Comparison summary of intelligent systems in fruit packaging container

Technology Purpose Advantages Disadvantages

Electrochemical Ethylene Sensor Determine the quality of fruit pro-
duce Determine the rate of respira-
tion and ripening in fruits by detect-
ing ethylene concentrations released 
by the fruit

Ethylene sensitive Can be used 
in individual and bulk packaging Less 
expensive than NDIR

Susceptible to chemical interference 
(can be internally mitigated) More 
costly than indicators

Capacitive Humidity Sensor Determine the package environ-
ment’s quality Determine the relative 
humidity of the package

Accurate and can be used in bulk 
packaging

Individual packaging is expensive 
and impractical

RFID Identify and convey package 
details Package data should be sent 
to an exterior processing unit

Scalable, simple to read and real time 
monitoring system

Active tags can be costly External 
infrastructure is required

Freshness Indicators Determine the quality of the packag-
ing environment and the fruit pro-
duce Detect the passage of various 
factor threshold limits (temperature, 
gas composition disruption)

Scalable, simple to read Neither quantifies data nor used 
as sensors
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data for evaluation of ripeness of strawberry using 
hyperspectral imaging. The optimal wavelengths were 
acquired between spectra of 441.1–1013.97 and 941.46–
1578.13  nm by loadings of PCA. The images obtained 
were used to extract optimal wavelengths and pattern 
texture features such as contrast, correlation, homo-
geneity and entropy. To build classification models on 
full spectral data, texture features, optimal wavelength 
and the combined dataset of texture features, and opti-
mal wavelengths, respectively, support vector machine 
(SVM) was used. Among all datasets, SVM models 
using combined datasets performed the best. The SVM 
models using datasets from hyperspectral images at 
441.1–1013.97 nm gave a better performance with 85% 
or more classification accuracy. Munera and co-worker 
assessed the efficacy of hyspectral reflectance imag-
ing for the evaluation of internal quality and sensorial 
attributes by means of Ripening Index (RPI) and the 
Internal Quality Index (IQI) of ‘Big Top’ and ‘Magique’ 
nectarines (Prunus persica L. Batsch var. nucipersica). 
During the ripening of fruit under controlled condi-
tions, the hyperspectral images of the whole fruits 
were taken, and their physicochemical properties were 
also determined. The correlation coefficient was found 
higher than 0.87 for the two cultivars and indices. The 
partial least square (PLS) models and IQI have shown 
promising results for further monitoring of the nectar-
ine maturity in industrial setups (Munera et al. 2017). In 
a similar study, HI was examined by Yan et al. (2017) in 
fresh cut celeries to calculate soluble dietary fiber (SDF) 
and insoluble dietary fiber (IDF) contents and visual-
ize their spatial distribution during 28-day of storage 
periods. A superior techniques, Genetic synergy inter-
val partial least square (GA-Si-PLS) algorithm and Si-
PLS were developed to establish a calibration model to 
achieve the highest prediction performance. The devel-
oped GA-Si-PLS models were then applied pixel-wise 
to visualize the spatial distribution of IDF and SDF con-
tents during storage successfully. The study determines 
that HSI could be helpful in real-time IDF and SDF 
contents monitoring in industry and vegetable research. 
Recently, the maturity and ripening stages of fruits has 
been productively examined by thermal imaging (TI). 
Fresh palm fruit was successfully classified into five 
stages using two TI camers and different approaches 
were selected designate the relation between the stages 
of maturity of palm fruits (Zolfagharnassab et al. 2016).

Hongwiangjan et  al. (2015) evaluated pomelo matu-
rity using peel optical properties and characteristics. A 
multivariate classifying model with the discriminant 
analysis is developed using optical parameters and peel 
related variables. The accuracy of classifying all samples 

into mature, late-mature, early-mature, and immature 
groups was 83.3%. A variation of green color between 
the oil gland and the peel surface was the most distinc-
tive difference between a group of the immature and the 
early-mature pomeloes from a group of the late-mature 
and mature pomelos.

Artificial intelligence
AI techniques have gained significant traction in the 
horticultural, agricultural, and food industries, offering 
opportunities for the development of intelligent systems, 
particularly with the introduction of machine learning 
(ML). ML, a subset of AI, employs algorithms to discern 
patterns in data and make informed decisions (Nturam-
birwe & Opara 2020). With the increasing affordability and 
accessibility of computing power, the integration of AI and 
ML in hyperspectral imaging system research is witness-
ing a surge. The success of AI in hyperspectral imaging can 
be attributed to its advantages over RGB imaging. AI tech-
niques applied to hyperspectral imaging data can uncover 
correlations with quality parameters that may elude the 
naked eye due to the richness of spectral and spatial data 
in a single image. This synergy between hyperspectral 
data and advanced AI techniques opens new avenues for 
enhancing the quality control of fresh produce.

Efforts to discover effective food assessment methods 
are centered on enabling efficient control and evalua-
tion of food products. In this context, artificial intelli-
gence methods supported by computer analysis prove 
invaluable for various decision-making processes and 
tasks related to food processing and preservation. Non-
invasive technologies with minimal costs are impera-
tive for ensuring high-quality food products, and image 
processing technology has gained increasing popularity 
in this context. Computer vision technology, a pivotal 
component of image processing, finds diverse applica-
tions, encompassing the identification, dimensioning, 
and quality assessment of kernels, tubers, vegetables, 
and fruits. It is also instrumental in pest identification, 
the evaluation of muscle and joint health, analysis of dry-
ing processes, fruit color and classification, as well as leaf 
area measurement. Researchers have developed vari-
ous image processing-based systems, such as the Lim-
ing and Yanchao strawberry classification system, which 
categorizes fruits based on their size, shape, and color 
(Al-Sammarraie 2022). While commercial software can 
assist in data analysis, its limitations may impede scien-
tific progress. Researchers are increasingly turning to 
new algorithms and data analysis workflows, often devel-
oped using free programming environments like Python 
or Octave. Open-source projects like Orange data mining 
software provide standardized data processing workflows 
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for various machine learning problems, streamlining data 
processing and analysis (Nakhle et al. 2021).

The potential of artificial intelligence systems has 
piqued the interest of scientists for future applications. 
An example is the use of artificial neural networks to 
non-invasively recognize orange flavor based on a color 
space model. A study conducted by Al-Sammarraie et al. 
(2022) explored the relationship between RGB values of 
orange fruits and their sweetness, determining the algo-
rithm with the highest prediction accuracy. This inter-
disciplinary research bridges the gap between AI, image 
processing, and food science, presenting exciting pros-
pects for future advancements in quality assessment and 
flavor recognition.

The integration of hyperspectral imaging with artificial 
intelligence techniques holds immense promise in revo-
lutionizing the evaluation of fruit and vegetable quality. 
By harnessing the power of AI and machine learning, 
researchers and industries can unlock the potential of 
non-destructive and cost-effective methods for assess-
ing produce attributes, ultimately enhancing freshness, 
flavor, and overall consumer satisfaction. As the fields of 
computer vision, image processing, and AI continue to 
advance, we can anticipate further innovative solutions 
that will drive the food industry towards more efficient 
and accurate quality control measures. With a growing 
emphasis on data analysis, open-source platforms like 
Orange data mining software offer invaluable resources 
for researchers to develop and implement cutting-edge 
algorithms. The pursuit of artificial intelligence systems 
in food science represents a significant leap forward in 
addressing the challenges of modern food assessment 
and holds immense potential for shaping the future of 
quality evaluation in the agricultural and food sectors 
(Lu et al. 2017).

Artificial Neural Network (ANN)
ANN is employed for the detection of fruit samples’ 
shape, size, and color. To ensure widespread usabil-
ity, the android mobile platform was chosen, making 
the proposed model accessible to numerous users. This 
image-based computer vision approach allows for non-
destructive assessment and grading of fruit and vegeta-
ble quality. For evaluating the quality of oranges, SVM 
was utilized. Similarly, the firmness of kiwifruit is pre-
dicted using ANN and linear regressions to determine 
its quality. The effectiveness of image-based grading 
using various machine learning algorithms is demon-
strated and explained. An Android app is developed to 
distinguish between naturally and artificially ripened 
fruits. Additionally, an image processing-based approach 
is implemented to count calories based on extracted 
features from an image. Furthermore, vegetable 

quality is measured using an ANN-based technique. 
These advancements in artificial intelligence and image 
processing hold great promise for enhancing the accu-
racy and efficiency of quality assessment in the fruit and 
vegetable industry. The utilization of ANNs in the evalu-
ation of fruit and vegetable quality has gained significant 
attention in recent years. ANNs are powerful machine 
learning algorithms capable of learning complex pat-
terns from data, making them well-suited for tasks such 
as detecting the shape, size, and color of fruit samples. 
By employing ANNs, researchers and industries aim to 
develop efficient and accurate grading systems that can 
assess the quality of produce with minimal human inter-
vention (Zhou et al. 2023).

To ensure the widespread adoption of such systems, 
the importance of a user-friendly platform cannot be 
overstated. Recognizing the popularity and accessibil-
ity of Android mobile devices, researchers have opted 
for this platform to implement their fruit and vegeta-
ble grading applications. This mobile-based approach 
empowers end-users, including farmers, distributors, 
and consumers, to conveniently and effortlessly assess 
the quality of produce. This convenience and accessi-
bility render the proposed model highly appealing to a 
broad spectrum of users, potentially revolutionizing the 
grading and trading of fruits and vegetables in the mar-
ket (Miranda et al. 2023).

For instance, SVMs have been effectively employed 
in determining the quality of oranges based on various 
parameters, facilitating efficient sorting and grading of 
oranges for diverse markets or processing purposes. Sim-
ilarly, ANN and linear regression models can predict the 
firmness of kiwifruit, a crucial quality attribute, ensuring 
optimal ripeness and market suitability. Furthermore, 
this research delves into the effectiveness of different 
machine learning algorithms in grading fruits and veg-
etables. By comparing and analyzing the performance of 
various algorithms, researchers can pinpoint the most 
suitable method for specific produce and quality attrib-
utes. These insights contribute significantly to the devel-
opment of robust and accurate grading systems tailored 
to the distinctive characteristics of different fruits and 
vegetables (Wieme et al. 2022).

Beyond grading, the application of artificial intelligence 
and image processing extends to various facets of the 
fruit and vegetable industry. Researchers have developed 
mobile applications capable of distinguishing between 
naturally and artificially ripened fruits, instilling con-
sumer confidence in the produce they purchase. More-
over, through the extraction of features from images, 
AI-powered apps can estimate calorie content, aiding 
individuals in making healthier dietary choices. The con-
tinuous evolution and integration of artificial intelligence, 
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machine learning, and image processing technologies 
hold immense promise for the transformation of the fruit 
and vegetable industry. From enhanced quality control to 
an improved consumer experience, these advancements 
contribute to more efficient, sustainable, and economi-
cally viable fruit and vegetable production and distribu-
tion processes. As researchers persist in exploring novel 
algorithms and approaches, the future of AI-driven fruit 
and vegetable quality assessment shines brightly, offering 
exciting possibilities for the entire agricultural and food 
sectors (Wieme et al. 2022).

The integration of artificial intelligence, machine learn-
ing, and image processing technologies into the evalua-
tion of fruit and vegetable quality signifies a significant 
stride forward for the agricultural and food industries. 
These cutting-edge approaches, encompassing artificial 
neural networks and support vector machines, enable 
precise, non-destructive, and real-time grading of pro-
duce attributes, ushering in a revolution in how fruits 
and vegetables are assessed, traded, and consumed. These 
proposed models have the potential to captivate a wide 
range of users, from farmers to consumers, by leveraging 
the power of mobile-based applications and user-friendly 
platforms, thus enhancing the accessibility and efficacy of 
quality assessment across the supply chain. The triumph 
of these AI-driven methods ushers in fresh opportunities 
for research and development in fruit and vegetable qual-
ity control, with exciting prospects for elevating fresh-
ness, ripeness, safety, and overall consumer satisfaction. 
As these technologies continue to evolve and researchers 
explore additional applications, the future of fruit and 
vegetable quality assessment stands on the cusp of trans-
formative advancements, shaping a more sustainable and 
technology-driven agriculture and food industry (Ben 
Ayed & Hanana 2021; Wieme et al. 2022).

Convolutional neural network
The effectiveness of CNN models in comparison to 
other machine learning techniques was established 
through extensive experimentation with a diverse data-
set comprising various fruits and vegetables. In the 
model training phase, once the dataset was curated, a 
series of preprocessing steps were employed to enhance 
image quality and remove extraneous information. 
These preprocessing techniques played a pivotal role 
in improving classification accuracy. Initially, stand-
ardization of images reduced data loss, followed by 
data augmentation to expand the dataset and enhance 
model performance. Subsequently, image characteris-
tics encompassing color, shape, size, and texture were 
extracted. These extracted features were then utilized to 
train the classifier. Figure 6 illustrates the CNN system, 
a deep learning algorithm, which effectively serves as a 

classifier for image recognition by processing pixel grids 
(Naranjo-Torres et al. 2020).

In a recent study conducted by Azadnia et al. (2023), an 
automated machine learning-based algorithm was devel-
oped to assess the maturity level of hawthorn fruits, a 
critical parameter influencing their suitability for various 
applications. The research involved assembling a com-
prehensive dataset of hawthorn images captured at dis-
tinct maturity stages, each exhibiting unique colors and 
textures. Image preprocessing techniques were meticu-
lously applied to standardize and enhance image qual-
ity. Machine learning algorithms, notably CNNs, were 
employed to train a model capable of categorizing haw-
thorns into distinct maturity levels based on their visual 
attributes. The results unequivocally demonstrated the 
algorithm’s exceptional accuracy in classifying hawthorns 
by maturity level. Nevertheless, a notable drawback of 
the study pertained to the dataset’s limited size, which 
could potentially impact the model’s robustness and gen-
eral applicability. To further advance this research, future 
endeavors may encompass dataset expansion, the incor-
poration of spectral imaging for deeper analysis, and the 
integration of the automated algorithm into hawthorn 
sorting and processing systems. These steps aim to bol-
ster quality control measures and enhance decision-mak-
ing processes during hawthorn harvesting and processing 
operations.

Application of AI in fruits and vegetables

Disease diagnosis Image pre-processing is an essen-
tial step in segmenting leaf images, distinguishing back-
ground, non-diseased portions, and diseased areas. 
This segmentation facilitates the efficient transmission 
of diseased portions to remote laboratories for further 
examination. Furthermore, image pre-processing enables 
real-time pest identification, detection of nutrient defi-
ciencies, and disease diagnosis recommendations. These 
advancements contribute significantly to reducing pesti-
cide losses, minimizing soil and groundwater contamina-
tion, and mitigating the risk of pesticide residues in the 
human food system. Additionally, the automation and 
efficiency brought about by image pre-processing address 
labor shortages in agricultural practices (Subeesh and 
Mehta 2021).

Figure  7 provides a comprehensive view of citrus fruit 
images, specifically highlighting various peel condi-
tions. These images encompass healthy fruits and fruits 
affected by five distinct types of blemishes, includ-
ing Huanglongbing (HLB), black spot, melanosis, can-
ker, and scab. Each condition is carefully selected and 
depicted for clarity and reference. In Fig.  7A, we see a 
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citrus sample with a healthy peel condition, serving as a 
reference point for comparison. In Fig.  7B, we observe 
HLB, a disease caused by Candidatus Liberibacter asi-
aticus, associated with stunted growth, improper fruit 
coloring, leading to green and misshapen fruits with 
a curved central core, deformities, and cracking (Doh 
et  al. 2019). Figure  7C showcases black spots on fruits, 
with diameters ranging from 0.12 to 0.4, which may 
appear small and circular but carry significant implica-
tions (Chen et al. 2021). Melanose, induced by Diaporthe 
citri, is displayed in Fig. 7D, characterized by scattered, 

raised brown to black blotches (Trivedi et  al. 2021). 
Figure  7E depicts citrus scabs, fungal infections more 
severe in regions with frequent wetting, resulting in tiny, 
gritty, irregularly shaped dots (Khan et al. 2021). Finally, 
in Fig.  7F, we observe canker with fruit spot diameters 
ranging from 1 to 10 mm, covered by water-soaked, yel-
low, curvilinear blemishes (Poongodi et al. 2022).

In a recent study by Dhiman et al. (2023), a precise fruit 
disease identification model, known as "PFDI," was devel-
oped, leveraging context data fusion techniques within 
an edge computing environment. The primary objective 

Fig. 6 Model of CNN.  (Source: Wang et al. 2022)
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of this research is to create an accurate, efficient, and 
dependable model for the detection of fruit diseases, 
which is a vital component of autonomous food produc-
tion on a robotic edge platform. This study delves into the 
analysis and investigation of four distinct Citrus fruit dis-
eases using CNN deep learning models, intended for use 
as edge computing solutions. Initially, a sequential model 
is employed to identify Citrus diseases, including can-
kers, black spots, greening, scab, melanosis, and healthy 
citrus fruits (as depicted in Fig.  7). This identification 
process begins without pruning and then proceeds with 
varying levels of sparsity following pruning, followed by 
post quantization. Figure  8 provides an overview of the 
Edge computing architecture within the proposed model. 
This architecture comprises four primary modules, each 
serving specific functions: 1) Collector nodes, 2) Deploy-
ment of web services or edge computing, 3) Prediction 
processes, model pruning, and quantization, and 4) User 
applications. The third module plays a pivotal role by 
bridging the gap between locally-based and remote func-
tions within the platform. Initially, data is collected from 

the public domain at the local level. However, as the data 
is initiated, edge services come into play for processing 
and computational tasks.

In this study, a transfer learning approach is 
employed to fine-tune the model for fruit disease 
detection by integrating visual data from two sources: 
Near-Infrared (NIR) and RGB. Authors evaluated 
early and late data fusion techniques for effectively 
integrating information from both NIFR and RGB 
models. The results of this approach are promising, 
with the proposed model achieving impressive accu-
racy rates for various diseases, including canker dis-
ease at 97%, scab at 95%, melanosis at 99%, greening 
at 97%, black spot at 97%, and healthy at 97%. The 
authors compared and evaluated the results of the 
proposed model with different sparsity levels, rang-
ing from 50 to 80%, 60% to 90%, 70% to 90%, and 
80% to 90% pruning. Additionally, the study exam-
ined the outcomes of post-quantization at each spar-
sity level. The findings indicate that by utilizing 60% 
to 90% pruning, the model’s size can be significantly 

Fig. 7 Healthy and infected citrus fruit images.  (Source: Dhiman et al. 2023)

Fig. 8 Overall edge computing architecture.  (Source: Dhiman et al. 2023)
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reduced without a substantial loss of accuracy. More-
over, post-quantization further reduces the model 
size, enhancing both precision and efficiency. An 
important advantage of this approach is its reduced 
dependence on pixel-level annotations, requiring only 
bounding box annotations for the implementation of 
new fruit disease detection methods.

While the study presents promising results, it is worth 
noting a potential limitation related to the dataset’s size 
and diversity, which may affect the model’s adaptability 
to different fruit types and disease conditions. Future 
research directions may involve expanding the dataset to 
encompass a broader range of fruit species and disease 
manifestations, fine-tuning the model’s architecture, and 
optimizing edge computing resources to enhance overall 
efficiency and applicability. The PFDI model represents 
a significant advancement in fruit disease identifica-
tion, offering precise and real-time insights that have the 
potential to revolutionize disease management practices 
in agriculture (Dhiman et al. 2023).

In a recent study, Azgomi et al. (2023) developed an 
effective system for diagnosing apple fruit diseases by 
combining image processing techniques and ANNs. 
The research aimed to create a comprehensive dataset 
of apple fruit images, including those with symptoms 
of common diseases like apple scab, apple rot, and 
healthy apples for reference. The image preprocess-
ing phase was meticulously carried out to standard-
ize image quality and extract pertinent features, with 
a focus on attributes such as color, texture, and shape. 
CNNs, a subtype of ANNs, were employed for image 
classification. The dataset was partitioned into train-
ing and testing sets to evaluate the model’s accuracy 
in distinguishing healthy apples from those affected by 
specific diseases, thus facilitating early disease detec-
tion and management. The study demonstrated the effi-
cacy of this approach in diagnosing apple fruit diseases 
accurately. However, future directions for this research 
include expanding the dataset to encompass a broader 
range of diseases and environmental conditions, opti-
mizing ANN architectures, and integrating real-time 
disease diagnosis into practical orchard applications 
(Azgomi et al. 2023).

Identifying crop maturity Images of various crops 
are captured under white/UV-A light to determine the 
proper stage of maturity of fruits. Farmers can create 
different maturity grades based on crop/fruit category 
and stack them separately before sending them to mar-
ket, especially for highly perishable horticulture crops, 
and harvesting at proper maturity will increase post-
harvest shelf life. In a study, an automated deep learn-
ing-based system was developed to accurately detect 

tomato maturity. The methodology involved collecting 
a comprehensive dataset of tomato images at different 
ripeness stages, categorizing them into specific classes. 
CNNs served as the core of the system, and the data-
set was divided into training and testing sets for model 
development and evaluation. Data augmentation tech-
niques were applied to enhance dataset diversity, and the 
CNN model was trained to recognize ripeness-related 
features. The results showcased the system’s efficiency 
in precisely classifying tomatoes by ripeness, reducing 
the need for manual sorting and inspection in agricul-
ture and food processing. Despite its success, potential 
limitations included dataset diversity and sensitivity to 
environmental conditions, which could be addressed in 
future research by expanding the dataset and improving 
robustness under varying scenarios. Future directions 
may also involve integration with food industry sorting 
systems and application to other fruits and vegetables 
for maturity detection (Mutha et al. 2021).

Similarly, the objective of another research endeavor 
was to employ a machine and deep learning approach 
using multispectral data to predict crucial agricultural 
parameters in soybean cultivation, including days to 
maturity, plant height, and grain yield. The methodol-
ogy involved collecting multispectral data from soy-
bean fields, covering various spectral bands, which were 
then utilized to develop predictive models. Traditional 
machine learning and deep learning techniques were 
both harnessed to create models capable of forecast-
ing days to maturity, plant height, and grain yield. The 
results demonstrated the effectiveness of these models 
in providing accurate predictions for these vital agricul-
tural attributes, facilitating precision agriculture prac-
tices. However, one potential drawback of the study was 
the requirement for substantial computational resources 
when implementing deep learning approaches. Future 
directions in this research area may involve optimiz-
ing computational efficiency, expanding the dataset to 
encompass diverse environmental conditions, and inte-
grating these predictive models into real-world farming 
applications to enhance soybean cultivation and overall 
crop management (Teodero et al. 2021).

Fruit grading In recent years, the application of image 
processing in fruit grading has gained prominence due to 
its pivotal role in the post-harvest process. Fruit grading 
involves the categorization of fruits based on parameters 
such as disease severity, defects, and contamination, a 
task traditionally executed manually, known for its time-
consuming and error-prone nature. Consequently, the 
need for an automated and faster grading system became 
evident. One such reliable solution is the application of 
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automatic image processing techniques for fruit sort-
ing and grading. Numerous studies have concentrated 
on harnessing the power of ML techniques, including 
SVM and ANN, to train models for the automatic clas-
sification and sorting of fruits like dragon fruits, based 
on attributes such as size, color, and ripeness. The out-
comes of these studies have showcased the feasibility of 
this approach, boasting high accuracy in grading and 
sorting dragon fruits, effectively reducing manual labor 
and ensuring consistent fruit quality throughout the agri-
cultural supply chain. However, a potential drawback of 
these studies lies in their limited generalization to vary-
ing environmental conditions and diverse fruit varieties. 
To address these limitations, future directions in this field 
may encompass refining the algorithms for enhanced 
robustness, scalability to handle larger datasets, and inte-
gration with real-world fruit sorting systems to further 
augment the efficiency and accuracy of dragon fruit grad-
ing and sorting (Patil et al. 2021).

Additionally, Menon et al. (2021) have made significant 
strides in advancing digital fruit grading and sorting tech-
niques through the application of cutting-edge technolo-
gies like computer vision, machine learning, and image 
processing. Their research underscores the efficiency 
and accuracy of these automated systems, presenting a 
notable advantage over traditional manual sorting meth-
ods. To ensure broader adoption across the fruit indus-
try, future directions should prioritize efforts to enhance 
the scalability and affordability of these technologies, 
particularly catering to the needs of smaller producers. 
Furthermore, research endeavors should explore the inte-
gration of hyperspectral imaging and advanced machine 
learning algorithms to enable more comprehensive fruit 
quality assessment. Additionally, addressing sustain-
ability concerns and investigating applications related to 
food waste reduction and supply chain optimization pre-
sent critical avenues for future research in this domain. 
Collaboration among academia, industry stakeholders, 
and policymakers will undoubtedly play a pivotal role in 
advancing these innovations and ensuring their success-
ful implementation throughout the fruit industry, prom-
ising more efficient and effective fruit grading and sorting 
processes in the future.

Biosensors
Biosensors play a vital role in assessing fruit maturity 
and ripeness, offering a non-destructive and real-time 
method for evaluating fruit quality (Ma et al. 2016). These 
innovative devices utilize biological components, such 
as enzymes or antibodies, to detect specific molecules 
or compounds related to fruit maturation processes. 
One common biosensor application in fruit maturity 

assessment is the detection of ethylene gas. Ethylene is 
a natural plant hormone responsible for triggering fruit 
ripening processes. As fruits mature, they release ethyl-
ene gas, and its concentration can be a reliable indicator 
of the fruit’s ripeness. Biosensors equipped with ethyl-
ene-sensitive elements can accurately measure ethylene 
levels in the fruit’s vicinity, allowing growers and produc-
ers to determine the optimal harvest time (Gupta et  al. 
2022a; Gupta et al. 2023; Medhi et al. 2022).

Additionally, biosensors can target other biochemi-
cal markers that change during fruit maturation, such 
as sugars, acids, and volatile compounds responsible 
for flavor development. For example, certain enzymes 
or receptors can be integrated into the biosensor to 
detect the levels of specific sugars like glucose and 
fructose, which increase as the fruit ripens. The use of 
biosensors in fruit maturity assessment offers several 
advantages (Senapati et al. (2022). Firstly, they provide 
real-time data, enabling timely harvesting to ensure 
fruits are picked at their peak quality (Gupta et  al. 
2022a). This not only enhances consumer satisfaction 
but also reduces post-harvest losses. Secondly, biosen-
sors are non-destructive, meaning they do not harm the 
fruit during measurement, making them ideal for qual-
ity control in large-scale fruit processing facilities. The 
development of biosensors for fruit maturity assess-
ment is an ongoing area of research, and advance-
ments in nanotechnology and biotechnology continue 
to enhance their sensitivity, specificity, and ease of use 
(Yumnam et  al. 2022). Moreover, the integration of 
biosensor data with artificial intelligence and machine 
learning algorithms allows for more accurate and pre-
cise predictions of fruit ripening trends, enabling 
optimized supply chain management and distribution 
(Kuswandi et al. 2022).

Hawari et  al. (2012) fabr icated the molecularly 
imprint polymer (MIP) based sensor to determine the 
mango aroma volatiles. In the MIP technique, mol-
ecules possess the ability of molecular recognition 
at low interference level. For decades, MIP has been 
effectively used to produce the material having more 
selective adsorption towards a particular molecule. 
The basic concept of MIP development includes the 
pre-arrangement of a functional monomer and a tem-
plate, followed by polymerization using a cross-linker 
at a certain temperature. Once the template is removed, 
it leaves a cavity that is selective to the targeted tem-
plate only MIP was fabricated by pre-arranging the 
functional monomer (methacrylic acid) and template 
followed by polymerization using cross-linker, which 
will form the MIP complex at a certain temperature. 
The template used is the imprinting molecule, which 
forms a receptor site with binding features according to 
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the morphology of the molecule and spatial orientation 
of the peripheral functionality. When the templates 
are removed, it forms a cavity having selective nature. 
Computational aids such as computer software were 
employed for designing the MIP, which is both time and 
cost-effective. In the understanding of the intermolecu-
lar interaction in the molecular system, HyperChem 
software simulation was used. It helps to retrieve 
essential information that lead to stable MIP such as 
the Binding Energy (ΔE) between the template and the 
functional monomer. In this study, different array MIPs 
template, including α-pinene, β-pinene and limonene 
were designed and fabricated onto the surface of quartz 
crystal microbalance (QCMs). Then, polymerize the 
coated MIPs, followed by the removal of templates 
molecules that would leave the cavity of selective tem-
plates. The synthesized QCM arrays were able to make 
a clear distinction between different terpenes gases due 
to its sensitivity and selectivity properties and quickly 
identified the gases released from the mangoes during 
the ripening. The optimal plucking time of fruits and 
may help in ensuring the quality and standards of the 
cultivar using the MIP technology.

It is important to distinguish between maturation and 
ripening, as they represent different qualities in the fruit’s 
growth process. Maturation pertains to the biological 
growth rate of the fruit, whereas ripening refers to the 
development that brings the fruit to a desirable stage 
for consumption. This stage is often assessed based on 
color and physical texture, as well as the attainment of 
the desired fruity aroma and flavor. Certain fruits exhibit 
climacteric and non-climacteric characteristics, which 
impact their post-harvest ripening behaviour. Climac-
teric fruits, like bananas, continue to ripen after being 
picked, and their freshness is closely tied to ripeness and 
ethylene emission. On the other hand, non-climacteric 
fruits, like strawberries, do not undergo significant rip-
ening after being harvested. The freshness of climacteric 
and succulent fruits is strongly linked to their ripening 
process and ethylene levels, while non-climacteric and 
aggregate fruits’ freshness depends on factors like time, 
temperature, and potential spoilage indicators such as pH 
and color.

Recent advances in agricultural science and tech-
nology have led to more precise methods for monitor-
ing and managing fruit maturation and ripening (Lino 
et al. 2008). Techniques like spectroscopy, hyperspectral 
imaging, and smart sensing devices provide real-time 
data on fruit quality parameters, enabling better har-
vesting decisions and reducing food waste. Additionally, 
research on post-harvest treatments, such as controlled 
atmosphere storage and ethylene regulation, is continu-
ally improving to prolong fruit shelf life and enhance 

consumer satisfaction. The ongoing efforts in under-
standing and optimizing the maturation and ripening 
processes in fruits are crucial in ensuring a steady supply 
of high-quality, flavorful, and nutritious produce to meet 
the demands of the ever-growing global population. 
Overall, biosensors have become invaluable tools in the 
fruit industry, providing growers, producers, and con-
sumers with valuable information to ensure the deliv-
ery of high-quality, flavorful, and nutritious fruits while 
minimizing food waste and optimizing the fruit supply 
chain. As technology continues to evolve, biosensors are 
expected to play an increasingly significant role in fruit 
maturity assessment, contributing to a more sustainable 
and efficient agricultural ecosystem.

Electronic Nose (E‑Nose) and Electronic Tongue (E‑Tongue)
The use of E-Nose technology has revolutionized various 
aspects of the fruit industry, including grading, sorting, 
determining the timing of fruit harvest, transportation, 
storage handling, and final selection. By characterizing 
aromatic compounds, E-Nose provides valuable insights 
into the quality and ripeness of fruits (Beghi et al. 2017; 
Liu et  al. 2020). E-Nose utilizes different types of gas 
sensors, with four commonly employed in commercial 
applications: Metal oxide semiconductors (MOS), Metal 
oxide semiconductor field-effect transistors (MOSFET), 
Conducting organic polymers (CP), and piezoelectric and 
Quartz crystals microbalance (QCM) (Table 4).

An electronic nose consists of several key components: 
a) a sample delivery system, b) sensor arrays, c) a signal 
processing unit, d) an information processing unit, e) 
software with analytical algorithms, and f ) a reference-
library database. The sample can be delivered through 
an automated or flow-based system, which may include 
sample concentration modulation (Electronic Nose 
2019). The sensor array is composed of various sensors 
that respond to different chemical classes across a wide 
range, enabling them to distinguish between different 
combinations of potential analytes. These sensors carry 
chemical-sensitive layers, chosen based on the type of 
samples being analyzed. The signals from the sensor array 
undergo various processing operations, including off-
set subtraction, concentration modulation by time, sig-
nal ratioing between sensors, signal averaging for noise 
compensation, signal normalization to account for aging 
effects, and range compression of sensory input. Through 
these processes, the outputs are collected and combined 
to create a distinctive digital response pattern, which is 
then recognized through its distinct aroma signature for 
identification and categorization. Before analyzing the 
sample, a reference digital library is used to create aroma 
signature patterns for known samples. The detection 
of odors relies on identifying unknowns based on their 
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aroma attribute patterns that exhibit similarities with pat-
tern databases in the reference library (Beghi et al. 2017). 
The continuous advancements in E-Nose technology and 
its integration with artificial intelligence and machine 

learning algorithms have expanded its capabilities and 
applications in the fruit industry. As research progresses, 
E-Nose is expected to play an increasingly significant 
role in optimizing fruit quality assessment, supply chain 

Table 4 Application of E-nose in fruits and vegetables maturity

E‑nose application Commodity Species Specific aim Sensors References

Ripeness Evaluation Apple Malus domestica Borkh Cultivar discrimina-
tion and prediction 
of the optimal harvest 
date

QMB (Libra Nose) Saevels et al. 2003

Quality indices assess-
ment and maturity 
evaluation

CPs (Cyranose 320) Pathange et al. 2006

Apple, pear and Peach - Fruit ripeness monitor-
ing

MOS (Prototype) Brezmes et al. 2000

Mandarin Citrus reticulata Maturity Monitoring MOS (PEN 2) Gómez et al. 2006b

Mandarin and Orange Citrus unshiu and Citrus 
sinensis

Quality Detection MOS (PEN 2) Qiu and Wang 2015

Peach and nectarine Prunus persica Sensorial Properties 
investigation

QMB (Libra Nose) Di Natale et al. 2001a

Peach P. persica Cultivar discrimination 
and quality assessment

QMB (Libra Nose) Di Natale et al. 2002

Peach P. persica Quality indices evalu-
ation

MOS (Prototype) Zhang et al. 2008a

Peach and nectarine P. persica Cultivar Discrimination 
and quality evaluation

MOS (EOS 835) Infante et al. 2011

Peach P. persica Quality indices predic-
tion

MOS (Prototype) Zhang et al. 2012

Mango Mangifera indica Maturity assessment MOS (FOX 4000) Lebrun et al. 2008

Maturity assessment CPs (Cyranose 320) Zakaria et al. 2011

Apricot Prunus armeniaca Cultivar discrimination MOS (FOX 4000) Solis-Solis et al. 2007

Cultivar discrimination MOS (PEN 2) Parpinello et al. 2007

Pear - Quality indices predic-
tion

QMB (Prototype) Zhang et al. 2008b

Cherry Prunus avium Cultivar discrimination 
and ripeness evaluation

MOS (PEN 2) Benedetti et al. 2010

Tomato Lycopersicum esculen-
tum

Maturity assessment MOS (PEN 2) Gómez et al. 2006a

Spring onion Allium spp. Quality evaluation CPs (AromaScan) Abbey et al. 2005

Garlic Allium sativum L Cultivar discrimination MOS and QMB (Proto-
type)

Trirongjitmoah et al. 
2015

Shelf-life assessment 
of fresh products

Apple M. domestica Borkh Storage time prediction MOS (Prototype) Guohua et al. 2013

Apple Malus sylvestris Quality Assessment 
during shelf life

QMB (Libra Nose) Saevels et al. 2004

Apple M. domesticaBorkh Shelf life evaluation MOS (Prototype) Brezmes et al. 2000

Mandarin C. reticulata Shelf life evaluation MOS (PEN 2) Gómez et al. 2007a

Banana Musa acuminata Quality assessment MOS (Prototype) Sanaeifar et al. 2016

Peach P. persica Quality changes dur-
ing cold storage

MOS (PEN 3) Rizzolo et al. 2013

Shelf life assessment 
of ready to eat products

Apple M. domestica Borkh Quality and shelf life 
of fresh cut slices

MOS (Fox 4000) Bai et al. 2004

Malus communis Shelf life of fresh cut 
slices

MOS (PEN 2) Siroli et al. 2014

- Shelf life modelling 
of fresh cut slices

MOS (PEN 3) Correa 2015
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management, and overall consumer satisfaction. By har-
nessing the power of electronic noses, the fruit industry is 
poised for greater efficiency, reduced waste, and improved 
fruit quality throughout the entire value chain.

E-Tongue imitates human tongue by using a variety 
of sensors to react the taste characteristics such as salty, 
sweet, sour, bitter and umami and then send signals 
through computer for elucidation, the mostly used sen-
sors are voltametric and potentiometric, this hybrid tech-
nology combines both methods shown in Fig. 9 (Liu et al. 
2020). E-Tongue widely used for beer fermentation analy-
sis, milk fermentation, in meat industry to determine the 
amount of curing agents. This makes better and efficient 
sensory analysis gives output corelating the sensorial 
analysis by experts and consumer preferences. In deter-
mining the ripening stage, e-nose as well as comparing 
the variations between the cultivars, and the work based 
on the maturity levels cluster analysis is applied to meas-
ure their maturity indices (TA, total soluble solids, and 
color) (Liu et al. 2020).

The E-nose has found effective application in moni-
toring changes in aroma during the ripening process of 
climacteric fruits like apple (Brezmes et al. 2000; Saevels 
et  al. 2003; Pathange et  al. 2006), peach (Brezmes et  al. 
2000; Di Natale et  al. 2001a, b and 2002; Infante et  al. 
2011; Zhang et  al. in 2012), mango (Lebrun et  al. 2008; 
Zakaria et  al. 2011), pear (Brezmes et  al. 2000), apricot 

(Parpinello et al. 2007), and tomato (Gómez et al. 2006a). 
However, there is limited information available regarding 
the application of the E-nose on non-climacteric fruits 
like cherry (Benedetti et  al. 2010), mandarin (Gómez 
et al. 2006b; Qiu and Wang 2015), and orange (Qiu and 
Wang 2015). Additionally, some literature has also uti-
lized the E-nose for purposes of cultivar discrimination 
and classification (Beghi et  al. 2017). To enhance selec-
tivity and increase the detection limits of target mol-
ecules, employing different types of sensing elements in 
the sensor array proves advantageous. Hu et  al. (2013) 
have pioneered a method to incorporate an array of 
single nanowires (NWs), including materials like poly-
aniline (PANI), palladium (Pd), polypyrrole (PPy), and 
zinc oxide (ZnO), representing metal, metal oxide, and 
conducting polymer categories, onto a single chip. This 
involved cutting a 4-inch wafer with patterned electrodes 
and nanochannels into smaller slices, with four distinct 
single nanowires grown onto electrochem-chips using 
varying electrolyte solutions. A probe station equipped 
with three probes facilitated direct contact with the elec-
trodes. The growth of Pd, PPy, and PANI single nanow-
ires occurred through electrochemical deposition, while 
ZnO nanowire growth involved electrochemical depo-
sition followed by a hydrothermal treatment. The chip 
containing these four distinct single nanowires under-
went rinsing in DI water and subsequent drying before 

Fig. 9 Schematic diagram of E-Tongue.  (Source: Liu et al. 2020)
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stabilization. This innovative nanowire array on a single 
chip has demonstrated its efficacy in detecting and iden-
tifying four target gases, including hydrogen, methanol, 
carbon monoxide, and nitrogen dioxide. One notable 
limitation is the limited application of E-Nose technol-
ogy on non-climacteric fruits like cherry, mandarin, 
and orange, indicating potential challenges in effectively 
assessing aroma changes in these fruit types due to differ-
ences in volatile organic compounds. Additionally, there 
is a need to enhance the selectivity of E-Nose technology, 
particularly in terms of distinguishing between specific 
target molecules and reducing cross-sensitivity issues. 
The complexity of developing sensor arrays with multiple 
sensing elements, such as nanowires made of different 
materials, poses manufacturing and maintenance chal-
lenges. Looking ahead, future research directions should 
aim to expand the application of E-Nose technology to 
non-climacteric fruits, broadening its utility in the fruit 
industry. Enhancing selectivity remains a critical goal, 
which may involve the development of more special-
ized sensor arrays or advanced data analysis techniques. 
Researchers could also explore ways to simplify sensor 
arrays without compromising accuracy. The integra-
tion of E-Nose technology with artificial intelligence and 
machine learning algorithms offers potential for more 
advanced and automated applications. Furthermore, 
efforts to expand the range of gases and compounds that 
E-Nose technology can detect and identify could open 
up new applications across various industries, extending 
its impact beyond fruit quality assessment. In summary, 
addressing limitations and exploring innovative direc-
tions are crucial for the continued growth and effective-
ness of E-Nose technology in the future.

Nanosensor
Nanotechnology and nanoscale materials represent inno-
vative and burgeoning fields of research. Nanoparticles, 
owing to their minuscule size and exceptional proper-
ties, hold vast potential for the development of novel 
devices with unprecedented applications in diverse fields, 
including optics, mechanics, pharmaceuticals, and food 
safety (Rabbani et  al. 2020). Nanosensors, in particular, 
have emerged as indispensable tools, enhancing health, 
environmental quality control, and numerous global 
applications.

These sensors extend their utility beyond medicine and 
pharmaceuticals, proving invaluable in the realm of food 
safety and security. Conventional methods often suffer 
from time constraints and high costs, making the devel-
opment of nanosensors a game-changing advancement. 
Many such sensors have been created with a focus on 
cost-effectiveness and scalability, improving agricultural 

efficiency, soil quality, food processing, packaging, food 
shelf life, and pathogen analysis (Ansari et al. 2023).

For instance, Sarkar et  al. (2020) engineered a ZnO 
Nanostructured ethylene gas sensor, a critical indica-
tor of fruit ripening. Their optimized sensor exhibited 
heightened sensitivity, promising significant benefits 
in ethylene gas detection during fruit ripening, thereby 
enhancing quality control and reducing food wastage. 
Similarly, Fahim et  al. (2020) crafted a chitosan-gra-
phene nanocomposite-based sensor with varying con-
centrations, manifesting unique gas-sensing capabilities 
through both mechanical and electrical means. Addition-
ally, Dalal et al. (2017) developed a nanosensor to detect 
malic acid in tomatoes, a marker of ripeness. They immo-
bilized malic enzyme on a carboxylated-multiwall carbon 
nanotubes electrode, characterizing it through SEM and 
FTIR analysis. Their study underscored the nanosensor’s 
rapid and accurate potential in determining tomato ripe-
ness by detecting malic acid levels.

The pre-determination of fruit maturity holds para-
mount importance, offering crucial insights into harvest-
ing and selling priorities and preservation conditions. In 
this context, nanotechnology demonstrates promising 
potential, enabling precise and timely maturity assess-
ment. This technology stands to significantly impact 
agricultural practices and market outcomes, offering the 
advantage of efficiency and accuracy. However, it’s essen-
tial to consider potential disadvantages such as the need 
for specialized equipment and expertise, as well as the 
cost of implementing nanotechnology-based solutions. 
Looking ahead, the future scope of nanosensors in agri-
culture and food safety is vast, with potential advance-
ments in scalability, cost-effectiveness, and broader 
adoption in the food industry. Further research and 
development in this field will continue to drive innova-
tion and improve the sustainability of agricultural prac-
tices worldwide.

Freshness sensors
Fruit ripeness, firmness, and freshness are essential 
parameters monitored by freshness sensors or indica-
tors, providing valuable insights into the quality of fruits. 
Conversely, smart sensors or smart packaging systems 
encompass embedded electronic components alongside 
electrochemical or electro-optical sensors strategically 
placed in close proximity to packaged fruits (Gómez 
et al. 2006; Kuswandi et al. 2013). These systems facilitate 
continuous monitoring of fruit quality, beginning from 
the moment the shipment leaves the processing plant 
until it reaches consumers, as depicted in Fig.  10. It is 
worth noting that the efficacy of fruit freshness sensors 
is contingent on the specific fruit type and its distinctive 
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physiological attributes (Alam et al. 2021). Consequently, 
understanding the physiology of the fruit is imperative in 
the development and implementation of freshness sen-
sors and smart packaging systems, as elaborated in the 
following sections.

Freshness sensors can be broadly classified into two 
categories: direct sensors and indirect sensors. Direct 
freshness sensors directly detect specific analytes present 
in the fruit, serving as direct indicators of food freshness 
(Kuswandi et  al. 2013). In contrast, indirect freshness 
sensors operate by detecting signs of fruit deteriora-
tion attributed to freshness factors, such as temperature 
and/or time (El-Ramady et  al. 2015). These sensors are 
meticulously designed to monitor various stages within 
the food distribution chain, including consumer packages 
displayed on store shelves. Importantly, these sensors 
must accurately gauge the rate of fruit freshness deterio-
ration (Alam et al. 2021).

The design and functionality of freshness sensors 
vary based on the specific monitoring stage within the 
food distribution chain or the consumer package on 
the shelf. Regardless of the stage, these sensors must 
effectively track the degradation rate of fruit freshness 
(Beshai et  al. 2020). A diverse array of concepts for 
fruit freshness sensors or indicators has been devel-
oped, encompassing parameters such as aldehyde (Kim 

et al. 2018, Vo et al. 2007), volatile organic compounds 
(VOC) (Mustafa et  al. 2018), ethanol (Boerman et  al. 
2016), hydrogen sulfide  (H2S) (Hu et al. 2012), pH (Guo 
et  al. 2007b, Park et  al. 2019), and  CO2 (de Almeida 
Teixeira et  al. 2018). These sensors or indicators are 
seamlessly integrated into food packaging as visible 
indicators, labels, or tags, undergoing discernible color 
changes in response to variations in freshness markers 
and/or analytes. Freshness sensors can be configured as 
single sensors, dual sensors, or multiple sensor arrays. 
The majority of commercially available freshness sen-
sors employ a single sensor, enabling monitoring of 
a single freshness parameter at a time, such as pH or 
time–temperature. Dual freshness sensors utilize two 
sensors that reference each other during the sensing 
process while simultaneously providing insights into 
food freshness. Moreover, dual and multiple sensor 
array configurations are currently under development 
in laboratory settings and are expected to be intro-
duced to the market soon. Figure 11 illustrates various 
types of fruit freshness sensors based on both direct 
and indirect sensing methods.

Direct fruit freshness sensors have the capability to 
detect and assess the freshness level of fruits based on 
distinctive markers or compounds. Traditional forms of 
direct fruit freshness sensors encompass indicators for 

Fig. 10 Illustration of smart food packaging system.  (Source: Alam et al. 2021)
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spoilage, ripeness, leakage, microbial pathogens, ethylene, 
and senescence. These sensors often incorporate a color 
indicator for straightforward visual assessment of fresh-
ness levels by the naked eye. The indicator undergoes a 
color change, and the rate of this change corresponds to 
the rate of food deterioration, which is closely linked to 
temperature fluctuations and time elapsed during food 
distribution cycles and shelf storage (Kuswandi et al. 2017).

Direct freshness (Ripeness detecting sensors) Ripeness, a 
crucial factor in assessing fruit freshness, often presents 
a challenge for consumers in their estimation. This pre-
dicament frequently leaves customers uncertain about 
the optimal time to purchase, store, or consume fruits. 
To address this issue, several commercial ripeness indi-
cators have been developed, offering practical solutions. 
Notably, ripeSenseTM, a company based in New Zea-
land, has introduced a promising approach (https://prod-
uct.statnano.com/product/6730/ripesense). Their sensor 
responds to the aromatic cues emitted by ripening fruit, 
undergoing a color transformation from red (crisp) to 
orange (firm) and eventually to yellow (juicy) as the fruit 
ripens further. Consumers can easily gauge the fruit’s 
ripeness state by simply observing the color of the sen-
sor, facilitating informed decisions. Moreover, the utiliza-
tion of such sensors can potentially mitigate fruit dam-
age and shrinkage resulting from consumer handling and 
inspection. These sensors are typically housed in recycla-
ble polyethylene terephthalate (PET) clamshell packag-
ing, aligning with the trend toward more hygienic and 

environmentally conscious packaging solutions. ripeSen-
seTM sensors effectively monitor the ripeness of various 
fruits, including pears, kiwifruit, melons, mangoes, and 
avocados. Furthermore, different stages of fruit ripening 
may release volatile compounds, a phenomenon studied 
using electronic noses (e-noses). For instance, e-noses 
have been employed to assess the ripeness of tomatoes 
(Gómez et al. 2006).

In another study, a straightforward, cost-effective, on-
package color indicator was developed using methyl red 
(MR) for the detection of ripeness in non-climacteric 
fruits, such as strawberries (Kuswandi et al. 2013). In this 
case, an increase in pH in the package headspace trig-
gered the release of volatile acids, gradually diminishing 
the presence of MR immobilized onto a bacterial cellu-
lose membrane. This enzymatic process resulted in the 
formation of esters during ripening, causing the indica-
tor’s color to transition from yellow to red–purple, sig-
nifying over-ripeness. A high correlation was observed 
between the color changes and strawberry ripeness 
levels. Consequently, real-time ripeness monitoring of 
strawberries was effectively demonstrated using this on-
package color indicator, applicable in both ambient and 
refrigeration conditions.

Ripeness sensors offer several advantages, including 
the provision of real-time data on fruit quality, assist-
ing in timely decisions for harvesting, packaging, and 
distribution. This helps reduce food waste and ensures 
consumers receive high-quality produce. The integration 

Fig. 11 Classifications of sensors for monitoring freshness of fruits.  (Source: Alam et al. 2021)
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of these sensors into smart packaging systems allows 
for precise monitoring and control of fruit storage and 
transportation conditions. However, limitations exist, 
including variations in sensor effectiveness based on 
fruit type, necessitating customization for specific varie-
ties. Calibration and maintenance are vital for sustained 
accuracy, and cost considerations may limit adoption, 
especially for small-scale growers and producers. Future 
developments aim to enhance sensor accuracy and ver-
satility, with advancements in multi-sensor arrays hold-
ing potential for improved fruit quality assessment. 
Efforts to reduce sensor costs may increase accessibility. 
Overall, ripeness sensors continue to evolve, contribut-
ing to the enhancement of fruit production and distribu-
tion (Alam et al. 2021).

Indirect freshness The indirect assessment of fruit fresh-
ness relies on using indirect freshness indicators like tem-
perature, storage duration, and technologies such as RFID 
(radio frequency identification). These indirect freshness 
sensors mimic the alterations in specific quality param-
eters of food when subjected to the same conditions as the 
indirect freshness indicators (Kuswandi et  al. 2013). The 
rate of change in these sensors should correspond to the 
rate of degradation in the packaged food due to fluctua-
tions in temperature and humidity during transportation, 
distribution, and storage over time. These indirect sensors 
should provide indications of freshness by means of alter-
ations in color and electronic signal output when exposed 
to abnormal storage temperatures and/or humidity levels 
(Mahajan et al. 2014).

Humidity sensor
A capacitive humidity sensor, a type of hygrometer, 

relies on changes in capacitance to gauge relative humid-
ity levels. This sensor consists of a pair of slender metal 
surfaces or electrodes separated by a dielectric material 
film, typically a metal oxide (as depicted in Fig. 12). These 
electrodes form a parallel plate capacitor with a specific 

capacitance value. As the moisture content in the sur-
rounding air varies, the permittivity of the dielectric film 
also undergoes changes. These alterations result in fluc-
tuations in capacitance between the two electrodes. The 
shift in capacitance generates a noticeable analog volt-
age difference across the electrodes, which can be quan-
tified and employed to ascertain the relative humidity 
level in the environment (Alam et al. 2021). These sens-
ing devices are designed to operate within a temperature 
range of -20 °C to 85 °C, encompassing the temperature 
fluctuations encountered during fruit transportation and 
storage (https://www.ti.com/tool/TIDA-00972).

While capacitive humidity sensors offer an extensive 
range and are among the most accurate humidity sensors 
available, they come with certain drawbacks. They are 
relatively costly and may experience long-term stability 
issues. Consequently, it is crucial to recalibrate or replace 
these sensors when they approach their recommended 
operational lifespan, particularly when they are reused 
for different batches of produce during transportation 
and packaging (Liu and Zhang 2021). Furthermore, the 
performance of capacitive humidity sensors can be con-
strained by challenges related to saturation, hysteresis, or 
prolonged exposure to high humidity conditions (Lam-
berty and Kreyenschmidt 2022).

In addition to their benefits, capacitive humidity sen-
sors do have drawbacks. They can be relatively expen-
sive and may suffer from long-term stability problems, 
necessitating recalibration or replacement after a certain 
lifespan, especially when used for various batches of pro-
duce during transportation and packaging. Furthermore, 
these sensors may face limitations related to saturation, 
hysteresis, or extended exposure to high humidity condi-
tions, which can affect their accuracy and performance 
(Lamberty and Kreyenschmidt 2022). Looking toward 
the future, there is potential for advancements in capaci-
tive humidity sensor technology. Researchers and engi-
neers are actively working on improving the long-term 
stability of these sensors and addressing issues related to 

Fig. 12 Working principle for a capacitive humidity sensor. A The initial setup of the capacitive sensor indicating no detectable voltage 
across the plates. B The introduction of water vapor in the atmosphere. (C) The change in the permittivity of the dielectric because of the water 
vapor, generating a detectable voltage across the plates.  (Source: Alam et al. 2021)
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saturation and hysteresis. Additionally, efforts are under-
way to make these sensors more cost-effective, which 
could broaden their applications in various industries, 
including the monitoring of fruit transportation and stor-
age. As technology evolves, capacitive humidity sensors 
are likely to become more reliable and accessible tools 
for ensuring the quality and freshness of fruits and other 
products during their journey from farm to table.

Time–temperature indicators (TTIs)
It serve as indirect freshness sensors that operate through 
various chemical, physical, and biological mechanisms 
(Maschietti 2010). Chemical and physical mechanisms 
involve reactions or changes influenced by alterations 
in time and temperature, such as acid–base reactions, 
melting, and polymerization. Biological mechanisms are 
linked to shifts in biological activity, including micro-
organisms, spores, or enzymes, in response to changes 
in time and temperature. TTIs primarily rely on color 
changes when exposed to temperatures beyond recom-
mended storage conditions for extended periods, indicat-
ing alterations as the product approaches the end of its 
shelf life. Consequently, TTIs offer a means to monitor 
the physical, chemical, and biological attributes of fruits, 
providing precise indications of freshness in terms of 
quality, safety, and shelf life.

Irrespective of the detection method, essential specifi-
cations for TTI datasheets encompass threshold temper-
atures and runout times. Threshold temperatures specify 
the indicator’s operational range, defining the maximum 
and minimum temperatures required to trigger record-
ing. Runout time represents the minimum duration at a 
temperature outside the operating range necessary for 
the entire indicator to change color. While TTIs provide 
reasonably accurate estimates of exposure to unfavora-
ble temperatures, they are not as precise as conventional 
temperature sensors. However, their straightforward 
operation, user-friendliness, and suitability for commer-
cial fruit smart packaging systems make them an ideal 
choice (https://www.3m.com/3M/en_US/company-us/
all-3m-products/~{}/MONMARK-3M-MonitorMark-
Time-Temperature-Indicators/?N=5002385+329378572
1&rt=rud).

Numerous commercial TTIs have been developed 
and are widely utilized for monitoring perishable goods, 
including fruits. Examples of such TTIs include Fresh-
Check®, Monitor MarkTM, OnVuTM, eO®, Timestrip®, 
Checkpoint®, and Tempix® (Beshai et  al. 2020). These 
commercial indicators primarily rely on chemical and 
enzymatic reactions and are frequently applicable to fruit 
packaging. For instance, Fresh-Check® is a self-adhesive 
chemical indicator based on polymerization, exhibit-
ing a visual color change and providing a full history of 

temperature exposure. Monitor MarkTM, on the other 
hand, is a partial-history TTI that offers temperature 
vs. time history through the diffusion of blue-dyed fatty 
acid esters. The OnVuTM indicator operates on a pho-
tochemical reaction principle, signaling exposure to 
elevated temperatures over time. eO® is a microbial-
based TTI that changes color in response to variations 
in the pH of deteriorating food products. Timestrip® 
functions on diffusion, where dye melting and migration 
occur through the porous membrane when tempera-
tures exceed the reference temperature. Checkpoint® 
indicator operates through enzymatic reactions, result-
ing in color changes. Tempix® is another diffusion-based 
TTI where activation liquid diffuses into a barcode in 
the event of temperature breaches. Due to their diverse 
mechanisms, commercial TTIs can be effectively used 
for assessing the freshness of various fruit types based 
on their specific degradation mechanisms and time–
temperature breaches (Alam et al. 2021).

Ethylene detecting sensors
Ethylene is released by fruits to initiate respiration, which 
generates energy for internal biochemical processes. As 
this process continues, the plant’s flavour, texture, and 
nutrition change; as a result, a continual respiration rate 
can cause this same fruit to ripen quickly and eventually 
decline. After harvest, some fruits do not ripen; instead, 
they enter the senescence stage. Due to their climacteric 
property, bananas, for example, are exceedingly sensitive 
to outside ethylene. To avoid the fast, this same quantity 
of ethylene now must obviously be monitored. It is obvi-
ous that the amount of ethylene present must be moni-
tored in order to avoid fruit’s rapid decomposition (Iqbal 
et al. 2017). Consequently, ethylene is commercially used 
in storage facilities to control fruit ripening. Fruits at dif-
ferent stages of ripening stored close together may also 
have a limited lifetime due to ethylene excretion from 
fresh fruits. Thus, ethylene scavenging and monitoring 
are strongly recommended to preserve fruit freshness. 
Ethanol scavenging helps to reduce fruit product loss due 
to ethylene overproduction. Potassium permanganate 
 (KMnO4) is a common ethylene scavenger that oxidises 
ethylene to ethylene glycol. Moreover, ethylene glycol 
can be oxidised further to  CO2 and  H2O, resulting in 
dark brown  MnO2. Granules of  KMnO4 on clay particles 
or activated carbon Low temperature oxidation above a 
platinum catalyst (Vermeiren et al. 1999) is a commercial 
ethylene scavenger at 0 °C on mesoporous silica capable 
of removing 50  ppm ethylene. Another study measured 
the amount of ethylene gas released by using the metal 
organic framework base, fruits were measured, possess 
an olefin detector. An electrochemical ethylene sensor 
was created using a semiconductor electrode made of 
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C60 and zeolite. It is built to track the ethylene gas for a 
variety of concentrations in order to describe how a fruit 
ripens and a new gas sensor was made that looked at var-
ious signal patterns created using the graphite line pat-
terning technique this created sensors are an economical 
way to track the fruit ripening was additionally observed 
without causing damage, using E-nose was employed to 
gauge the evolution of ethylene a sensor for chemicals 
array built on  TiO2 was introduced.

Infrared thermal emission techniques are also used 
to develop an ethylene sensing device. A high-sensitiv-
ity silicon temperature detector was connected to an 
infrared heat source adjusted to the 10.6 m wavelength. 
The 10.6 μm IR waves were absorbed by the addition of 
ethylene into the wave path between the IR source and 
temperature detector, which also lowered the surface 
temperature of the detector. The output was next trans-
formed into an electrical signal (in mV) that provided a 
precise measurement of the amount of ethylene. These 
sensors may be used for fruit ripening applications on 
site and in field as well as fruit screening (Kathirvelan 
and Vijayaraghavan 2017). The sensor works on the prin-
ciple of resistance variation in the presence or absence 
of analyte. The  TiO2-WO3 dispersion was transformed 
into a gel using the sol–gel technique, which was applied 
to the substrate’s surface and implanted with gold elec-
trodes using a brush coating technique. When fruit inter-
acts with the constructed sensor, ethylene is produced, is 
oxidised into ethylene oxide, and subsequently releases 
electrons and re-enters the sensor element, resulting in a 
reduction in resistance. Because the reactions are revers-
ible, the created sensor has a higher sensitivity and may 
be reused. The manufactured sensor was reasonably 

priced, and its baseline resistance changed less over time 
(Kathirvelan et al. 2017).

Carbon dioxide non‑dispersive infrared sensor
Modified consumer packaging, which alters the atmos-
pheric conditions, plays a crucial role in ensuring the 
freshness and quality of fruits. By maintaining higher 
carbon dioxide levels and reducing oxygen levels, pack-
aging creates an environment that slows down respira-
tion, controls ripening, and prevents premature decay 
(Esser et al. 2012). However, excessive reduction in oxy-
gen levels can lead to cell death and accelerate decay. 
To maintain the appropriate packaging conditions, 
NDIR sensors are employed to monitor atmospheric 
gases effectively (Fig. 13). NDIR sensors utilize infrared 
light absorption to quantify specific gases present in 
the atmosphere. The sensor emits a beam of light with 
wavelengths between 700 nm to 1 μm, passing through 
the target gas-containing air to an optical detector. 
Atmospheric gases selectively absorb certain wave-
lengths of light while allowing others to pass through 
unaffected. The amount of light absorbed or transmit-
ted is measured by the optical detector, and this data is 
used to determine the quantity of specific gases present 
in the atmosphere (https://www.co2meter.com/blogs/
news/6010192-how-does-an-ndir-co2-sensor-work).

In smart packaging systems for fruits, carbon dioxide 
is a crucial target gas used to control the atmosphere’s 
composition during the transportation and storage of 
produce. When the packaging seal is broken, external 
oxygen seeps in, and carbon dioxide disperses, acceler-
ating the fruit’s ripening process. NDIR sensors, oper-
ating at 4300  nm infrared wavelength, easily detect 

Fig. 13 Setup of the NDIR sensor. The infrared (IR) light with a wavelength of 700 nm to 1 μm is partially absorbed by carbon dioxide and partially 
transmitted through to the detector.  (Source: Alam et al. 2021)
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carbon dioxide, as it does not interfere with oxygen 
absorption (Vanderroost et al. 2014).

In fruit packaging, the measuring range, accuracy, 
and precision of NDIR sensors are essential consid-
erations. The measuring range indicates the percent-
age of carbon dioxide in the air that the sensor can 
detect. Standard NDIR sensors can detect a range of 
0–20 percent carbon dioxide gas with an accuracy of 
approximately ± 0.5% and a sensitivity of about 0.05%. 
These sensors offer long lifespans, allowing for reuse 
in multiple fruit shipments and requiring minimal 
maintenance. However, there is a risk of external spec-
troscopic interference affecting the optical detector, 
leading to inaccurate light detection. The use of optical 
filters can mitigate this issue (Dinh et  al. 2016). NDIR 
sensing is particularly suitable for system-level smart 
packaging, where the sensor is placed outside the food 
package and provides feedback to system actuators to 
optimize storage conditions. This technology’s advan-
tages lie in its ability to create an environment that pro-
longs fruit freshness, enhances shelf life, and reduces 
food waste, contributing to more sustainable packaging 
solutions for the fruit industry.

Radio Frequency Identification (RFID)‑based sensor system
The focus of most sensing systems discussed earlier is on 
assessing the quality of fruits or fruit products. However, 
valuable information can also be gathered from the con-
tainers used to store citrus fruits. Active packaging uti-
lizing RFID technology can monitor and identify product 
quality during storage and transportation in containers. 
RFID tags, similar to electronic barcodes, are affixed to 
pre-packed units and store data that can be accessed later 
through a network as required. These systems consist of 
an RFID tag with an antenna, an RFID scanner, and radio 
waves to communicate data to a network. The tag con-
tains an integrated circuit and an antenna enclosed in a 
protective covering. When scanned, the RFID tag trans-
mits package information to the reader via the antenna, 
and the receiver converts the radio waves emitted by the 
tag into the appropriate data format (Alam et  al. 2021). 
These RFID scanners can function independently or in 
conjunction with a central network for storing, process-
ing, and distributing data. For instance, in refrigerated 
fruit storage, wireless sensing technologies like RFID and 
wireless sensor networks (WSN) were used to monitor 
temperature and humidity. The combination of RFID and 
WSN devices in commercial wholesale chambers enabled 
the creation of 3D temperature maps and psychrometric 
simulation models to calculate changes in latent heat and 
absolute water content in the air. By utilizing RFID and 
WSN sensor networks, energy consumption in cold stor-
age, water loss from products, and the detection of water 

condensation on stored commodities could be estimated 
(Badia-Melis et  al. 2015). One of the significant advan-
tages of RFID technology is its ease of detection on car-
rier containers or storage shelves. The reading range of 
RFID can be adjusted based on the operation frequency 
and power supply transmission line unit, making it more 
flexible than traditional barcode technology, that requires 
a clear line of sight and proper orientation for reading. 
Moreover, RFID scanners can read multiple tags simulta-
neously, allowing for efficient scanning of single contain-
ers or bulk quantities. As this technology continues to 
evolve, the future scope includes further improvements 
in accuracy, range, and integration with smart packag-
ing systems, enhancing the monitoring and control of 
fruit storage and transportation, ultimately reducing food 
waste and ensuring better product quality for consumers.

A study was performed to detect the freshness of veg-
etables focusing on oxygen and carbon dioxide concen-
tration in which a monitoring system based on an RFID 
tag was developed. The criteria behind the development 
of the sensor was that the concentrations of these two 
gases are related to freshness and affect the food. The 
RFID system can be comparatively managed easily. The 
used sensors were programmed accordingly to the use, 
and the RFID tag was prepared. The prepared tags kept 
inside the vegetable packets and study was carried out 
at several days to check the concentration of both the 
gases and to determine the freshness level. However, this 
research is still in the initial stages, where only two gases 
were detected. Further motivation is to develop the 
smart RFID tag and to produce more precise data on the 
freshness of fruit and vegetables (Eom et  al. 2012). To 
address the problems of fruits and vegetable freshness, 
a sensor was developed which works with the principle 
of measurement of change in ion concentration in fruit 
and vegetables. The prototype was composed of four dif-
ferent circuits, such as processor supply circuit, liquid 
crystal display circuits, the measurement circuit. These 
circuits were designed by using a circuit design pro-
gram called Dip Trace after the test was done manually 
by using circuit test boards. Notably, the measurement 
circuit was designed using sensitive and low tolerated 
resistors to increase the sensitivity of performed meas-
urements. Three different critical intervals were chosen 
for each sample to determine their freshness. By stab-
bing these electrodes to sample freshness measurement 
can be done by using information about the ion concen-
tration of the sample. If the value is in the first interval, 
it means the sample is fresh, if the measurement result 
is in the second interval it means the sample is about to 
lose its freshness, and for the values, in the third interval 
the result will be written: “the sample is rotten and can-
not be consumed”. This developed prototype was used 
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for different fruit varieties such as citrus variety, apple, 
pear, and strawberries to determine the freshness, and it 
was observed that as the fruit decays, the ion concentra-
tion of the fruit gets decreased. The prototype was suc-
cessfully applied in the initial measurement and is still 
required modification to make it advance (Kemiklioglu 
and Ozen 2018). Recently, polyvinyl alcohol and red cab-
bage (Brassica oleracea L.) extract based electrospun 
nanofiber mat was fabricated to analyze the pH. The 
nanofibers were subjected to pH sensitivity test applying 
a sequence of different pH solutions and using a color-
imeter, the color spectrum of nanofiber mats were cali-
brated at different pH values. As per the results found, 
it could be said that the designed mat can be convenient 
as a pH sensor and show pH values within the range of 
2–12. The color changes of the mat were reversible with 
respect to the change in the pH value, and thus the mon-
itoring of transient changes could be performed effica-
ciously (Maftoonazad and Ramaswamy 2019).

In conclusion, RFID technology offers numerous 
advantages in packaging applications, particularly in 
the context of fruit monitoring and logistics. RFID tags 
enable efficient inventory management through reader 
placement at storage entrances, offering simplicity in 
tag detection even within carrier containers or storage 
shelves. Their adjustable reading range, based on opera-
tion frequency and power supply, surpasses the limita-
tions of traditional barcode technology, which demands 
line of sight and proper orientation for scanning. RFID 
scanners excel in reading multiple tags simultaneously, 
facilitating both single-item and bulk scanning. How-
ever, challenges exist, such as susceptibility to interfer-
ence, especially when surrounded by materials like metal, 
and higher installation costs compared to conventional 
barcodes, which is a consideration in mass production. 
Nonetheless, RFID tags are cost-effective when applied 
to reusable containers or packages, delivering benefits 
in food quality monitoring. Integration of freshness sen-
sors with RFID tags enables the monitoring of various 
factors including humidity, temperature, light exposure, 
pressure, and pH, safeguarding food safety and quality 
by identifying potential cold chain disruptions. Look-
ing ahead, future directions in food quality monitoring 
involve the continued development and refinement of 
wireless sensor technologies. In one study, real-time tem-
perature and humidity monitoring for small cold storage 
units of fruits and vegetables was demonstrated using an 
Arduino microcontroller-based system, showcasing high 
measurement accuracy and ease of use. This approach 
holds promise for enhanced remote monitoring in vari-
ous storage scenarios. Additionally, in the case of the 
banana supply chain, modelling and validation of trans-
port from Costa Rica to Europe revealed the potential for 

automated warning messages based on temperature and 
humidity variations, enabling remote monitoring of the 
ripening process within containers. These advancements 
underscore the growing potential of wireless sensor tech-
nologies to revolutionize food quality monitoring prac-
tices, ensuring the safety and integrity of our food supply.

Future scope
Expansion of application areas
The advancements in computer vision techniques for 
determining maturity indices in the food processing 
sector are expected to extend their application to other 
industries as well. Industries such as pharmaceuticals, 
cosmetics, and textiles may benefit from similar auto-
mated processes for the quality assessment and maturity 
determination of their products. Research and develop-
ment in these areas could lead to the creation of new and 
innovative applications for computer vision technologies.

Development of specialized hardware
As the demand for more efficient and accurate maturity 
index determination increases, there is likely to be a focus 
on the development of specialized hardware tailored 
to the specific needs of various industries. This could 
include the design of portable and cost-effective devices 
equipped with integrated biosensors and AI capabilities, 
making the technology more accessible and practical for 
different settings.

Integration of advanced AI techniques
The use of artificial intelligence in conjunction with 
computer vision techniques is expected to evolve fur-
ther. Researchers may look into how to combine deep 
learning algorithms, CNNs, and other cutting-edge AI 
methods to improve the accuracy, speed, and adaptabil-
ity of maturity index determination. Such developments 
could lead to real-time, on-site analysis and decision-
making, reducing the time and resources required for 
quality assessments.

In‑field automation and precision agriculture
The application of computer vision techniques for matu-
rity index determination has the potential to revolu-
tionize agriculture. With the integration of autonomous 
drones, robotic systems, and smart sensors, farmers 
can efficiently monitor crop maturity in real-time, ena-
bling precise harvesting and resource management. This 
implementation could improve crop yields, reduce waste, 
and optimize agricultural practices.

Standardization and regulation
As the adoption of computer vision techniques for matu-
rity index determination becomes more widespread, 
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there will likely be a need for standardization and regu-
lation. Bodies like the Food and Drug Administration 
(FDA) and other relevant authorities may establish guide-
lines and criteria for the use of these technologies in dif-
ferent industries to ensure consistent and reliable results.

Collaboration and interdisciplinary research
Future research in this domain will likely require collabo-
ration between experts in various fields, including com-
puter vision, agriculture, food science, and engineering. 
Interdisciplinary efforts can lead to more comprehensive 
solutions and novel approaches that address complex 
challenges in maturity index determination.

Environmental impact assessment
The integration of computer vision techniques in agri-
culture and food processing can potentially reduce 
waste and improve resource utilization. Future studies 
may focus on conducting comprehensive environmental 
impact assessments to quantify the benefits of these tech-
nologies, contributing to sustainable practices and pro-
moting eco-friendly solutions.

Data privacy and security
As computer vision-based systems collect and analyze vast 
amounts of data, ensuring data privacy and security will 
become paramount. Future research will need to address 
these concerns and develop robust protocols to safeguard 
sensitive information and prevent unauthorized access.

Global adoption and technological transfer
To fully realize the potential of computer vision tech-
niques in maturity index determination, efforts to pro-
mote technology transfer and global adoption will be 
crucial. This could involve knowledge-sharing initiatives, 
capacity building in developing regions, and fostering 
international collaboration to ensure equitable access to 
these advancements.

In a nutshell, the future scope of computer vision tech-
niques in maturity index determination is promising and 
diverse. The continued research and development in this 
area have the potential to transform various industries, 
improve product quality, optimize resource management, 
and contribute to sustainable practices on a global scale.

Conclusions
In conclusion, this review underscores the significant 
impact of recent computer vision advancements in deter-
mining the maturity indices of fruits and vegetables in 
the food processing sector. Techniques such as NMR, 
NIR, and thermal imaging show promise in replacing 

labor-intensive manual methods, offering more efficient 
and accurate assessments. These methods, whether 
destructive or non-destructive, exhibit versatility and 
potential for automation. Integrating biosensors and AI 
enhances precision, expanding their application across 
industries. Beyond food processing, these technologies 
hold promise in pharmaceuticals, textiles, and more, with 
potential hardware and AI advancements on the hori-
zon. In agriculture, they enable real-time monitoring and 
resource management, fostering sustainability. However, 
standardization, data privacy, and security remain crucial 
considerations, necessitating interdisciplinary collabora-
tion for responsible adoption. In summary, computation 
techniques have transformative potential, revolutionizing 
industries, promoting sustainability, and advancing auto-
mation and efficiency, with continued research and col-
laboration essential for their responsible and beneficial 
integration into various sectors.
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