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Abstract 

Background Se (selenium) pollution is an emerging environmental concern. Excessive Se induces phytotoxicity. 
The endogenous  H2S (hydrogen sulfide) was involved in plant adaptation to Se stress, but the signaling player of  H2S 
remains unclear.

Methods The study was conducted in a hydroponic system with different chemicals added to the treatment solu-
tion. Fluorescent tracking was performed to detect endogenous signaling molecules in plant tissues. Physiological 
changes were determined based on pharmaceutics and histochemical experiments. Gene expression was analyzed 
using qRT-PCR. The data were summarized using hierarchical cluster and Pearson correlation analysis.

Results Se stress inhibited B. rapa growth (e.g. root elongation, shoot height, and seedling fresh weight and dry 
weight) in both dose- and time-dependent manners, with approximately 50% of root growth inhibition occurred 
at 20 µM Se. Se stress induced ROS (reactive oxygen species) accumulation and oxidative injury in B. rapa. Se exposure 
resulted in the upregulation of LCDs (L-cysteine desulfhydrase) and DCDs (D-cysteine desulfhydrase) encoding enzymes 
for  H2S production in B. rapa at early stage of Se exposure, followed by downregulation of these genes at late stage. 
This was consistent with the change of endogenous  H2S in B. rapa. Enhancing endogenous  H2S level with NaHS  (H2S 
donor) stimulates endogenous  Ca2+ in B. rapa upon Se exposure, accompanied the attenuation of growth inhibi-
tion, ROS accumulation, oxidative injury, and cell death. The beneficial effects of  H2S on detoxifying Se were blocked 
by decreasing endogenous  Ca2+ level with  Ca2+ channel blocker or  Ca2+ chelator. Finally, hierarchical cluster com-
bined with correlation analysis revealed that  Ca2+ might acted as downstream of  H2S to confer Se tolerance in B. rapa.

Conclusion Ca2+ was an important player of  H2S in the regulation of plant physiological response upon Se stress. 
Such findings extend our knowledge of the mechanism for Se-induced phytotoxicity.
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Graphical Abstract

Introduction
Se (selenium) contamination has been becoming an 
emerging environmental concern due to agricultural 
and industrial activities (He et al. 2018). Se is an essen-
tial nutrient for mammals. Mammals take up Se mainly 
through consuming agro-products containing Se. There-
fore, food crops with Se biofortification has been becom-
ing popular, requiring the increase in the application 
of Se-enriched fertilizers in agricultural environment 
(Sarwar et  al. 2020). Excessive use of these fertilizers 
increases Se level in soil, sediments, and groundwater 
(Bajaj et al. 2011; Mehdi et al. 2013; Winkel et al. 2012). 
Mining industries (such as metals, phosphate, and coal 
mining) also accelerate the release of Se into the environ-
ment (Etteieb et  al. 2020). Excessive Se leads to serious 
environmental pollution (Sakamoto et al. 2012). The limit 
of 10  µg/L has been commonly used for Se in drinking 
water in most countries (Vinceti et  al. 2013). In some 
regions, the concentration of Se in water is up to 669.5–
1400 µg/L (Bajaj et al. 2011; Kuisi & Abdel-Fattah 2010; 

Zelmanov & Semiat 2013). Irrigation of Se-rich soil can 
accelerate the mobilization of Se to enlarge the pollution 
(Kausch & Pallud 2013).

Se at low level is beneficial for plants’ adaptation to 
stress conditions, but excessive Se inhibits plant growth 
by inducing physiological disorders. Se-induced phy-
totoxicity depends on different Se forms and differ-
ent plant species. In plants,  SeO3

2− is more toxic than 
 SeO4

2− because  SeO3
2− is easier to be incorporated into 

the Se-amino acids in plant cells. This process causes 
protein dysfunction, further resulting in phytotoxic-
ity and growth inhibition (Lyons et  al. 2005).  SeO3

2− at 
50–100  µM remarkably inhibits the biomass of pea, 
maize, Indica mustard, and Arabidopsis (Hawrylak-
Nowak 2008; Lehotai et  al. 2016; Molnár et  al. 2018). 
Some plant species are even more sensitive to Se stress. 
 SeO3

2− at more than 20 µM reduces the growth and pro-
ductivity of cucumber and lettuce (Hawrylak-Nowak 
2013; Hawrylak-Nowak et  al. 2015). Se-induced phyto-
toxicity includes oxidative injury, nutrient deficiency, 
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and phytohormones disturbance, etc. (Hasanuzzaman 
et  al. 2020b). Oxidative stress is one of the typical con-
sequences of Se-induced phytotoxicity. Se stress inhib-
its root growth by disturbing the homeostasis of ROS 
(reactive oxygen species) and RNS (reactive nitrogen 
species) in Arabidopsis thaliana (Kolbert et al. 2016). Se-
induced increase in ROS content and lipid peroxidation 
have been found in variable plant species, such as Pisum 
sativum (Lehotai et al. 2016), Brassica rapa (Chen et al. 
2014a), Triticum aestivum (Łabanowska et al. 2012), and 
Hordeum vulgare (Akbulut & Cakir 2010). The protec-
tive role of Se in plants have been extensively studied in 
detail, but Se-induced phytotoxicity has not been fully 
understood.

The endogenous gaseotransmitter  H2S (hydrogen 
sulfide) plays vital roles in regulating plant growth and 
development. In plant cells,  H2S can be generated by 
LCD (L-cysteine desulfhydrase, EC4.4.1.1) and DCD 
(D-cysteine desulfhydrase, EC4.4.1.15) (Arif et  al. 2021). 
 H2S has been characterized as a defensive signaling mol-
ecule combating stress conditions (Zhang et  al. 2021). 
Our previous study demonstrated that Se stress inhibited 
the root growth of Brassica rapa (Chinese cabbage) by 
suppressing endogenous  H2S (Chen et  al. 2014b), while 
other players related to  H2S signal pathway are still miss-
ing in plants upon Se stress.  H2S can interact with various 
signaling molecules to regulate plant intrinsic physiology 
(Wang et al. 2021a).  Ca2+ is one of the important player 
of  H2S.  Ca2+ is an important second messenger for plant 
stress adaptation (Tong et  al. 2021).  Ca2+ can act both 
upstream and downstream of  H2S in plants in response to 
variable abiotic stimuli (Li 2019). CaM (calmodulin), one 
of the core transducers of  Ca2+ signaling, is also involved 
in the interplay between  H2S and  Ca2+ (Fang et al. 2014). 
However, it is unclear whether and how  H2S-Ca2+ inter-
action regulates Se-induced phytotoxicity.

In this work, we analyzed Se stress-inhibited growth 
of B. rapa seedlings. The role of  H2S-Ca2+ interaction in 
the regulation of B. rapa tolerance against Se stress was 
studied. The results of this work may help understand 
the mechanism for plant physiological adaptation to Se 
stress.

Materials and methods
Plant culture and treatment
The seeds of B. rapa were sterilized with NaClO (1%) 
for 5  min, followed by washing with distilled water 
and germinating at 25  °C for 24  h. Then the germi-
nated seeds were transferred to a floating net, culturing 
with 1/4 strength Hoagland solution in a light chamber 
with active radiation of 200  μmol/(m2 s), photoperiod 
of 12  h, and temperature at 25  °C, based on our previ-
ous study (Cheng et  al. 2021). About 30 seedlings with 

root length at 1.5  cm were cultured at 700  mL nutrient 
solution with  Na2SeO3 added at different concentration 
(0–80 µM). Various chemicals were added to the nutrient 
solution for different treatment. NaHS (10 µM) and HT 
(hypotaurine) (20  µM) were applied as  H2S donor and 
 H2S scavenger, respectively. EGTA (ethylene glycol-bis(2-
aminoethylether)-N,N,N′,N′-tetraacetic acid) (0.5  mM) 
and  LaCl3 (50  µM) were applied as  Ca2+ chelator and 
 Ca2+ channel blocker, respectively (Li et  al. 2014). Plant 
tissues were harvested after treatment, respectively, fol-
lowed by physiological measurement.

Fluorescent detection
We used several specific fluorescent probes to perform 
histochemical detection in  situ in roots based on our 
previously published methods (Li et al. 2014; Yang et al. 
2022). Endogenous  H2S,  Ca2+, total ROS, cell death were 
detected by using WSP-1 (Washington State Probe-1), 
Fluo-3, DCFH-DA (2’,7’-dichlorofluorescein diacetate), 
and PI (propidium iodide), respectively. WSP-1 was 
obtained from Bejing Solarbio Science & Technology 
Co., Ltd (Beijing, China). Fluo-3, DCFH-DA, and PI were 
obtained from Beyotime Biotech. Inc (Shanghai, China). 
The fluorescent images were captured with a fluores-
cence microscope (ECLIPSE, TE2000-S, Nikon, Melville, 
NY, USA). Image-Pro Plus 6.0 (Media Cybernetics, Inc., 
Rockville, MD, USA) was applied to calculate relative flu-
orescent density for each image.

Histochemical detection
Endogenous hydrogen peroxide and superoxide radical in 
leaves were detected in vivo by using DAB (3,3-diamin-
obenzidine) and NBT (nitro-blue tetrazolium) staining, 
respectively (Zhou et  al. 2008). For hydrogen peroxide 
detection, leaves were incubated in DAB (0.1 w/v, pH 
3.8) at 25  °C for 30  min. For superoxide radical detec-
tion, leaves were incubated in 6  mM NBT (dissolved in 
10 mM sodium-citrate buffer, pH 6.0) at 25 °C for 30 min. 
The leaves with specific staining were transferred to 
boiling ethanol for 30  min to remove the green back-
ground  (chlorophyll), followed by photographed with a 
digital camera.

The lipid peroxidation in root was histochemically 
detected by using Schiff’s reagent. The roots were stained 
in Schiff’s reagent for 15 min, followed by washing with 
 K2S2O5 solution (0.5% w/v in 0.05  M HCl) for 10  min. 
The loss of membrane integrity in roots were histochemi-
cally detected using Evans blue. The roots were incubated 
at Evans blue solution (0.025%, w/v) for 15 min, followed 
by washing with distilled water for 10 min. For the histo-
chemical detection in leaves, the leaves were stained with 
the reagent as described above. Then the stained leaves 
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were incubated in boiling ethanol for 30 min to remove 
chlorophyll, followed by photographed with a digital 
camera (Ye et al. 2016).

Gene experssion analysis
We selected Trizol (Invitrogen, ThermoFisher Scientific, 
Shanghai, China) to extract total RNA from plant tis-
sues based on manufacturer’s instructions. The reaction 
mixture for reverse transcription consisted of M-MLV 
(200 units), RNAase inhibitor (20 units), ligo (dT) prim-
ers (0.5 µg), and RNA (3 µg). The obtained first cDNA 
was used as template to perform quantitative RT-PCR 
using Applied Biosystems 7500 Fast Real-Time PCR 
System (LifeTechnologies™, ThermoFisher Scientific, 
Shanghai, China). The abundance of gene expression 
was quantified using  2−ΔΔT threshold cycle method 
(Livak & Schmittgen 2001). The relative abundance 
of Actin was applied as internal standard to standard-
ize the results. The primers used for amplifying target 
genes were listed in Table S1.

Data analysis
Each result were shown as mean ± SD (standard devia-
tion) with at least three replicates. The significant dif-
ference between two designated data sets was evaluated 
by ANOVA (one-way analysis of variance) combined 
with F-test at P < 0.05. LSD (least significant difference) 
was performed to make multiple comparison analysis at 
P < 0.05. The package “corrplot” in R was used to perform 
Pearson correlation analysis among different parameters. 
The heatmaps for hierarchical cluster analysis and gene 

expression analysis were generated by using the package 
“pheatmap” in R and TBtools (Chen et al. 2020).

Results
Se stress inhibited the grwoth of B. rapa
We analyzed the phenotype of B. rapa seedlings under 
different concentrations of  SeO3

2− (0–80 µM) up to 72 h. 
Se stress inhibited the seedling growth in a dose-depend-
ent manner (Fig.  1A, B). The root length significantly 
decreased by 5.83%, 23.2%, 50.4%, 60.5%, and 76.8% at 
5, 10, 20, 40, and 80 µM Se, respectively, as compared to 
control (Fig. 1C). The shoot height significantly decreased 
by 12.8%, 25.1%, 34.9%, 42.1%, and 48.2% at 5, 10, 20, 
40, and 80  µM Se, respectively, as compared to control 
(Fig. 1D). The FW (fresh weight) of seedlings significantly 
decreased by 14.7%, 20.6%, 35.3%, 58.5%, and 73.5% at 
5, 10, 20, 40, and 80  µM Se, respectively, as compared 
to control (Fig.  1E). The DW (dry weight) of seedlings 
were significantly inhibited by Se at high concentrations 
(40–80  µM) (Fig.  1F), which may be resulted from the 
decrease in RWC (relative water content) (Fig. 1G).

As the root length under 20 µM Se treatment was about 
half of control, we monitored the time-course changes of 
seedling growth upon 20 µM Se. Compared to the con-
trol, Se treatment began to significantly prohibit root 
elongation after exposure of 12 h, followed by decreased 
growth speed of root with the prolong of treatment time 
(Fig. 2A). The root FW showed similar changes with root 
length upon Se exposure (Fig.  2B). The shoot FW and 
whole plant FW were decreased after 24 h of 20 µM Se 
treatment (Fig. 2C, D).

Fig. 1 Growth changes of B. rapa seedlings upon Se exposure. A Photos of seedlings grown in hydroponics with different concentrations of Se 
for 72 h. B Phenotype of seedlings after treated with Se for 72 h. Bar = 1 cm. C The root length of seedlings. D The shoot height of seedlings. E The 
fresh weight of seedlings. F The dry weight of seedlings. G The RWC of seedlings. Different lowercase letters in (C-G) indicated significant difference 
among different treatments (n = 3–10; P < 0.05; LSD, ANOVA)



Page 5 of 14Ye et al. Food Production, Processing and Nutrition            (2024) 6:13  

Se stress induced oxidative stress in B. rapa
We detected total ROS level in roots using specific fluo-
rescent probe DCFH-DA. Se stress led to ROS accumu-
lation in roots in a dose-dependent manner (Fig.  3A). 
Compared to the control, the DCF fluorescent density 
significantly increased by 44.5%, 69.3%, 181.2%, 284.6%, 
and 377.7% at 5, 10, 20, 40, and 80 µM Se, respectively 
(Fig.  3B). In leaves, we evaluated two typical ROS 

(superoxide radical and hydrogen peroxide) in  vivo by 
using histochemical analysis. The leaves showed inten-
sified staining with the increase in Se concentration 
(Fig. 3C, D), indicating that Se treatment resulted in the 
accumulation of superoxide radical and hydrogen per-
oxide in leaves.

As over-accumulated ROS always attack protein and 
lipid to cause oxidative stress, lipid peroxidation and loss 

Fig. 2 Time-course observation of the growth of B. rapa seedlings under 20 µM Se. A Root length. B Root fresh weight. C Shoot fresh weight. 
D Whole plant fresh weight. Asterisk indicated significant difference between control and treatment of 20 µM Se at each time point (n = 3–10; 
P < 0.05; ANOVA)

Fig. 3 ROS accumulation in B. rapa seedlings under Se stress. A Total ROS in roots indicated by DCF fluorescence. B DCF fluorescent density 
in roots. Different lowercase letters in indicated significant difference among different treatments (n = 3; P < 0.05; LSD). C Superoxide radical in leaves 
indicated by NBT staining. D Hydrogen peroxide in leaves indicated by DAB staining
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of membrane integrity were detected histochemically to 
evaluate oxidative injury in B. rapa seedlings upon Se 
exposure. We observed aggravated lipid peroxidation in 
both leaves and roots with the increase in Se concentra-
tion (Fig. 4A, B). Se stress also induced the loss of mem-
brane integrity in leaves and roots (Fig. 4C, D). The roots 
showed more severe oxidative injury than that of leaves 
because of direct Se exposure of roots. These results sug-
gested that Se stress induced oxidative injure in B. rapa.

Se stress disturbed endogenous  H2S level in B. rapa
We previously identified the gene family of BrLCD and 
BrDCD from the genome of B. rapa, which included 
10 BrLCDs and 2 BrDCDs (Chen et al. 2014b). Here we 
detected the expression file of these genes in roots upon 
the exposure of Se at 20  µM that led to moderate inhi-
bition of root elongation. Se stress induced the upregu-
lation of most of these genes after treatment for 3–48 h 
followed by downregulation with prolonged treatment 
(72 h) (Fig. 5).

As 20  µM Se induced strong upregulation and down-
regulation of  H2S-producing genes at 48 and 72  h, 
respectively (Fig.  5), we detected endogenous  H2S level 
in roots with specific fluorescent probe WSP-1 at these 
two time points. Se treatment for 48 h resulted in signifi-
cant increase in  H2S level as compared to control, with 
remarkably decreased  H2S level at 72 h (Fig. 6A, B). This 
was consistent with the expression pattern of BrLCDs 
and BrDCDs. Endogenous  H2S was decreased at the end 
of Se treatment (72 h).  H2S was supplied by adding NaHS 
 (H2S donor) in the treatment solution. As expected, add-
ing NaHS significantly enhanced endogenous  H2S level in 
Se-treated roots, accompanied the recovery of root elon-
gation. The effect of NaHS was counteracted by adding 
 H2S scavenger HT (Fig.  6C, D). These results suggested 
that  H2S generation in roots was triggered upon the early 
exposure of Se. However, prolonged Se stress decreased 
 H2S generation, which was associated with the final inhi-
bition of root growth.

Fig. 4 Oxidative injury in B. rapa seedlings under Se stress. A Lipid peroxidation in leaves indicated by Shiff’s reagent. B Lipid peroxidation in roots 
indicated by Shiff’s reagent. C Loss of membrane integrity in leaves indicated by Evans blue. D Loss of membrane integrity in roots indicated 
by Evans blue
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Fig. 5 Relative expression of BrLCDs and BrDCDs in the roots of B. rapa seedlings upon treatment of 20 µM Se. The heatmap data were shown 
as the expression of Se treatment with respect to control. Red, white, and blue indicated upregulation, unchanged, and downregulation, 
respectively

Fig. 6 The change of endogenous  H2S in the roots of B. rapa upon Se and NaHS. A Root endogenous  H2S fluorescence detected by WSP-1 
upon Se (20 µM) exposure at 48 h and 72 h. B Calculated WSP-1 fluorescent density according to (A). C WSP-1-based endogenous  H2S level in roots 
under treatment of Se (20 µM), NaHS (10 µM), and HT (20 µM) for 72 h. D Root length under treatment of Se (20 µM), NaHS (10 µM), and HT (20 µM) 
for 72 h. Asterisk in (B) indicated significant difference between control and Se treatment (n = 3; P < 0.05; ANOVA). Different lowercase letters in (C) 
and (D) indicated significant difference among different treatments (n = 3–10; P < 0.05; LSD)
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Ca2+ was involved in  H2S‑regulated growth of B. rapa 
upon Se stress
We selected specific fluorescent probe Fluo-3 to detect 
endogenous  Ca2+ in the roots (Fig. 7A). Se (20 µM) expo-
sure for 72  h significantly decreased endogenous  Ca2+ 
in the roots compared to control. Adding NaHS signifi-
cantly enhanced endogenous  Ca2+ in Se-treated roots, an 
effect reversed by further adding  Ca2+ chelator (EGTA) 
or  Ca2+ influx channel blocker  (La3+) (Fig.  7B). The 
change of relative expression of BrCaM1 showed similar 
pattern with endogenous  Ca2+ upon the same treatment 
(Fig. 7C).

Then we detected the growth response of B. rapa seed-
lings upon the  same treatment. NaHS attenuated root 
growth inhibition was counteracted by adding EGTA or 
 La3+ under Se exposure  (Fig.  8A). The fresh weight of 
root, shoot, and the whole seedlings also showed simi-
lar changing patterns with root length (Fig.  8B-D). The 

above results suggested that  H2S activated intracellular 
 Ca2+ signal to facilitate B. rapa growth under Se stress.

Ca2+ was involved in  H2S‑attenuated oxidative injury in B. 
rapa upon Se stress
NaHS prohibited Se-induced ROS accumulation in 
roots and leaves, which could be reversed by further 
adding EGTA or  La3+ (Fig.  9). NaHS attenuated Se-
induced oxidative injury in roots and leaves, an effect 
that could be diminished by further adding EGTA or 
 La3+ (Fig.  10A-D). Root cell death was detected by 
using Trypan blue staining and PI fluorescence, respec-
tively. NaHS attenuated Se-induced root cell death, 
which could be reversed by further applying EGTA or 
 La3+ (Fig.  10E-G). These results suggested that  Ca2+ 
acted downstream of  H2S to ameliorate ROS accumula-
tion, oxidative injury, and cell death in B. rapa upon Se 
stress.

Fig. 7 H2S activated endogenous  Ca2+ signaling in the roots of B. rapa upon Se and NaHS. A Root endogenous  Ca2+ fluorescence detected 
by Fluo-3 upon NaHS, EGTA (0.5 mM), or  La3+ (50 µM) in the presence of Se (20 µM) for 72 h. B Calculated Fluo-3 fluorescent density. C Relative 
expression level of BrCaM1 upon the same treatment. Different lowercase letters in (B) and (C) indicated significant difference among different 
treatments (n = 3; P < 0.05; LSD)

Fig. 8 H2S-Ca2+ interaction promoted the growth of B. rapa upon Se stress. A Root length upon NaHS, EGTA (0.5 mM), or La.3+ (50 µM) 
in the presence of Se (20 µM) for 72 h. B Root fresh weigh. C Shoot fresh weight. D Seedling fresh weight. Different lowercase letters indicated 
significant difference among different treatments (n = 3–10; P < 0.05; LSD)
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Cluster analysis of  H2S‑Ca2+ interaction in B. rapa upon Se 
stress
We performed hierarchical cluster analysis to summa-
rize the relationship among different treatments based on 
the changes of physiological parameters obtained above 
(Fig.  11A). The control and Se + NaHS were clustered 
together, suggesting that NaHS was able to counteract the 
effect of Se. The Se + NaHS +  La3+, Se + NaHS + EGTA, 
and Se were clustered together, suggesting that either 
 La3+ or EGTA partially diminished the effect of NaHS 
under Se stress. Therefore, enhancing  H2S level (provided 
by NaHS) mitigated Se-induced physiological disorders, 
an effect that was partially blocked by decreasing intra-
cellular  Ca2+ (by adding  La3+ or EGTA).

Then we performed Pearson correlation analysis to 
investigate the relationship among different physiologi-
cal parameters under same treatment setup (control, Se, 
Se + NaHS, Se + NaHS + EGTA, and Se + NaHS +  La3+) 
(Fig.  11B). ROS was positively correlated to cell death, 
indicating that ROS accumulation caused cell death in B. 

rapa under Se stress. The growth parameters (e.g. root 
FW, shoot FW, total FW, and root length) were negatively 
correlated to ROS and cell death, respectively, indicating 
that ROS-triggered cell death caused growth inhibition. 
 Ca2+ was positively correlated to CaM, suggesting the 
synchronous activation of  Ca2+ signaling by  H2S.  Ca2+ 
and CaM were positively correlated to growth parame-
ters but negatively correlated to ROS and cell death. This 
indicated that  H2S activated  Ca2+ signaling to suppress 
ROS and cell death in order to promote growth under Se 
stress.

Discussion
Se is an emerging environmental pollutant impeding 
plant growth. Se can cause phytotoxicity at a wide range 
of concentration (15–100  µM), which depends on plant 
species (Hasanuzzaman et al. 2020b). Se at 0.21–4.08 mg/
kg (about 2.66–51.7  µM) in agricultural soil resulted in 
the toxic accumulation of Se in paddy rice and Chi-
nese cabbage (Huang et  al. 2009). We found that Se at 

Fig. 9 H2S-Ca2+ interaction prohibited ROS accumulation B. rapa upon Se stress. A Root total ROS fluorescence detected by DCF upon NaHS, 
EGTA (0.5 mM), or La.3+ (50 µM) in the presence of Se (20 µM) for 72 h. B Calculated DCF fluorescent density. C NBT-stained superoxide radial 
in leaves upon the same treatment. D DAB-stained hydrogen peroxide in leaves upon the same treatment. Different lowercase letters in B indicated 
significant difference among different treatments (n = 3; P < 0.05; LSD)
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Fig. 10 H2S-Ca2+ interaction attenuated oxidative injury and cell death in B. rapa upon Se stress. A Loss of membrane integrity in roots upon NaHS, 
EGTA (0.5 mM), or La.3+ (50 µM) in the presence of Se (20 µM) for 72 h. B Lipid peroxidation in roots. C Loss of membrane integrity in leaves. D Lipid 
peroxidation in leaves. E Root cell death stained by Trypan blue. F Root cell death indicated by PI fluorescence. G Calculated PI fluorescent density. 
Different lowercase letters in (G) indicated significant difference among different treatments (n = 3; P < 0.05; LSD)

Fig. 11 Cluster analysis of  H2S-Ca2+-facilitated Se tolerance in B. rapa. A Hierarchical cluster analysis among different treatments based 
on obtained physiological parameters. The legend showed the value of  Log2(Treatment/Control) for each parameter. Red, white, and blue 
indicated upregulation, unchanged, and downregulation, respectively, for each treatment as compared to control. B Pearson correlation analysis 
among different physiological parameters under the same treatment setup (Control, Se, Se + NaHS, Se + NaHS + EGTA, and Se + NaHS + La.3+)
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concentration more than 5  µM inhibited the growth of 
B. rapa seedlings, with 20 µM of Se resulted in moderate 
inhibition of seedling growth. Se-induced phytotoxicity 
not only depends on plant species, but also depends on 
the growth stage of plant. Further studies are needed to 
identify the toxic dose of Se on adult plants of B. rapa.

We previously found that endogenous  H2S is vital for 
the survival of B. rapa seedlings under Se stress (Chen 
et  al. 2014b). In this study, four lines of evidence indi-
cate that  H2S-Ca2+ interaction plays a role in combating 
Se stress in B. rapa. First, Se stress inhibited the growth 
of B. rapa by inducing oxidative stress. Second, the bio-
synthesis of endogenous  H2S in B. rapa was suppressed 
at the end of Se exposure. Enhancing endogenous  H2S 
alleviated growth inhibition of B. rapa under Se stress, 
an effect reversed by decreasing endogenous  H2S. Third, 
Se stress decreased endogenous  Ca2+ level and BrCaM1 
expression in B. rapa, which were elevated by enhanc-
ing endogenous  H2S. Fourth,  H2S-ameliorated oxidative 
stress and growth inhibition were blocked by decreasing 
endogenous  Ca2+ in B. rapa under Se stress. These results 
suggested that  H2S conferred Se tolerance by regulating 
 Ca2+ signaling in B. rapa.

Excessive Se frequently induce oxidative injury in 
plants (Hasanuzzaman et  al. 2020a; Van Hoewyk 2013). 
The antioxidative role of  H2S has been widely identi-
fied in plants (Liu et  al. 2021; Zhang et  al. 2021). We 
found increased endogenous  H2S in B. rapa at early 
stage of Se exposure, suggesting that Se stress triggered 
 H2S-mediated defensive responses. However, prolonged 
exposure of Se led to decreased endogenous  H2S, accom-
panying the occurrence of oxidative injury and growth 
inhibition. Se stress for 72 h finally dampens the defen-
sive role of  H2S, leading to phytotoxicity. NaHS is a reli-
able donor of  H2S for suppressing ROS in roots (Chen 
et al. 2014b). NaHS-provided  H2S enhanced endogenous 
 H2S level in Se-treated roots up to 72  h, leading to the 
detoxification of excessive Se by alleviating oxidative 
stress in B. rapa. These results propose a defensive role of 
endogenous  H2S against Se stress.

The expression patterns of BrLCDs and BrDCDs were 
similar to the changes of endogenous  H2S level in B. rapa 
under Se stress. This suggested that Se stress disturbed 
the biosynthesis of endogenous  H2S. The  H2S biosynthe-
sis can be differentially regulated by different environ-
mental stimuli. Cadmium stress induces  H2S biosynthesis 
by activating both LCD and DCD in alfalfa (Cui et  al. 
2014). Drought stress triggers the expression of LCD but 
not DCD in Arabidopsis thaliana (Shen et al. 2013). The 
gene expression is mainly controlled by the cis-elements 
in the promoter region of the gene. Se stress may regulate 
gene promoters to modulate gene expression in plants 
(Chen et al. 2014a). Further studies are needed to identify 

the cis-elements in the promoters of LCDs and DCDs. 
This may help understand the differential regulation of 
plant  H2S biosynthesis by Se stress and other environ-
mental stimuli.

Ca2+ is a universal messenger regulating plant stress 
responses (Pirayesh et  al. 2021). Little is known about 
the role of  Ca2+ in the regulation of Se-induced phyto-
toxicity. In this study,  H2S-promoted  Ca2+ was associated 
with the growth promotion of B. rapa under Se stress. 
 H2S triggered intracellular  Ca2+ signaling that further 
attenuated oxidative stress and growth inhibition in B. 
rapa under Se stress. The cross-talk between  H2S and 
 Ca2+ play a role in alleviating oxidative damage in plants 
upon abiotic stresses.  Ca2+ interacts with  H2S can ame-
liorate oxidative injury to confer salt tolerance in mung 
bean roots (Khan et  al. 2021). The interplay between 
 H2S and  Ca2+/CaM facilitates acclimation of zucchini to 
nickel toxicity by suppressing oxidative stress (Valivand 
et  al. 2019). Having link  Ca2+ and  H2S into a signaling 
cassette provides new signaling events of Se tolerance 
in plants. In mammalian cells,  H2S interacts with the 
sulfhydryl group of  Ca2+ channel protein to regulate its 
activity, leading to the modulation of  Ca2+ homeostasis 
(Munaron et al. 2013; Yong et al. 2010). The  Ca2+ channel 
blocker compromised  H2S-conferred tolerance against 
Se stress, suggesting the possible role of  Ca2+ channel in 
 H2S signaling. Further studies are needed to identify the 
possible target  Ca2+ channel that can be regualted  H2S in 
plants upon Se stress.

The interaction between  H2S and  Ca2+/CaM has been 
found in both plants and fungi.  H2S improves heat tol-
erance of tobacco by triggering the influx of extracellu-
lar  Ca2+ into cytosol, working with CaM (Li et al. 2012). 
 H2S induces betulin accumulation by elevating endog-
enous  Ca2+ and CaM in the mycelia of Phellinus linteus 
(Fan et  al. 2016).  Ca2+ can also work upstream of  H2S. 
In Arabidopsis against chromium stress,  Ca2+/CaM2 
interacts with transcription factor TGA3 to facilitate 
the binding of TGA3 to the promoter of LCD, enhanc-
ing the transcription of LCD to promote  H2S generation 
(Fang et  al. 2017). In the present study,  Ca2+/CaM acts 
downstream of  H2S to improve Se tolerance in B. rapa. 
Whether and how  Ca2+ modulates  H2S signaling through 
a possible feedback regulation need further investigation.

Se is an essential micronutrient for both crops and 
humans. It is important to avoid Se pollution during Se 
biofortification performance to achieve the develop-
ment of sustainable agriculture. In Se-deficient areas, 
efforts are made to enhance the uptake and assimilation 
of Se in crops. This can be achieved by supplying organic 
Se fertilizers at low level because crops prefer to accu-
mulate organic forms of Se. This would help minimize 
the overaccumulation of exogenous Se in agricultural 
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environment. Another possible approach is the genetic 
engineering of crops with enhanced Se uptake abil-
ity (Malagoli et  al. 2015). In Se-polluted areas, phytore-
mediation is a promising approach to decrease Se level 
in soil. The byproducts of Se phytoremediation need to 
be disposed carefully (Hasanuzzaman et  al. 2020b; Zhu 
et al. 2009). It is also possible to promote crop tolerance 
against Se stress in Se-polluted soil. In the present study, 
exogenous application of  H2S donor was able to trigger 
Se tolerance in B. rapa, but it is difficult to apply  H2S in 
field because of the inevitable loss of gaseous  H2S. The 
promising approach is to construct nano-emulsion par-
ticles to package donors, achieving the sustainable supply 
of gaseous molecules for a long time (Wang et al. 2021b).

Conclusion
Understanding plant physiological adaptation to Se 
stress is important for the management of excessive 
Se pollution. This study revealed a new signaling mod-
ule  (H2S-Ca2+) involved in plant response to Se stress. 

 Ca2+/CaM acts as a downstream player of  H2S to facili-
tate plant tolerance against Se stress.  H2S,  Ca2+ and 
CaM worked as a liner signaling cassette to suppress 
ROS accumulation followed by the alleviation of oxida-
tive injury and cell death, promoting root growth under 
Se stress (Fig.  12). More evidences are needed to iden-
tify the detailed biochemical mechanisms for  H2S-Ca2+ 
interaction in Se-treated plants, but our current results 
would help understand the adaptation of plants to Se 
contamination.
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Fig. 12 Schematic model of the role of  H2S-Ca2+ interaction in the regulation Se tolerance in B. rapa. Se exposure decreases endogenous  H2S level 
by downregulating the expression of LCDs and DCDs. NaHS-provided  H2S enhances endogenous  H2S level upon Se stress. Elevated  H2S triggers 
 Ca2+/CaM signaling to alleviate ROS accumulation, oxidative injury and cell death, further promoting root growth. The beneficial effect of NaHS can 
be abolished by adding HT, EGTA, or  La3+. NaHS,  H2S donor; HT,  H2S scavenger; EGTA,  Ca2+ chelator;  La3+, influx channel blocker
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