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Abstract 

Currently, teas and herbal infusions represent an important part of the human diet. Most contain phenolic com-
pounds with high antioxidant activity, usually associated with human health protective functions. This attribute 
defines teas and infusions as nutraceutical foods. In Argentina, several native species are traditionally used for medi-
cal purposes. Some of those species are Larrea cuneifolia, Larrea nitida, Grindelia chiloensis, Pteromonnina dictyo-
carpa, Mandevilla laxa, and Monttea aphylla. The objectives of this study were to analyze the antioxidant power 
and the scavenging capacity of infusions obtained from those six medicinal plants, to characterize the phenolic 
profile, and to study in vitro their safety or cytotoxicity. Additionally, the potential use of two infusions as antioxidant 
additives in a food model was evaluated. The results indicated that the analyzed plant species are rich in phenolic 
acids (e.g., caffeic, ferulic, and chlorogenic acid), and flavonoids (e.g., quercetin and kaempferol), with high antioxi-
dant power. The infusion blend obtained with G. chiloensis and L. cuneifolia exhibited the highest value of antioxidant 
capacity measured with the FRAP technique (193.4 μg EAA/mg DW). On the other hand, L. cuneifolia infusion showed 
the greatest antioxidant capacity determined by FRAP (131.9 ± 5.2 μg EAA/mg DW) and DPPH assays (0.453 mL/mg 
s). Additionally, L. cuneifolia infusion showed the highest phenolic content (232.8 μg GAE/mg DW) and flavonoid 
content (153.3 μg QE/mg DW). None of the infusions showed toxicity in mammalian cells, except for G. chiloensis. 
Furthermore, the L. cuneifolia and L. nitida infusions showed a high inhibitory effect on lipid oxidation in ground beef 
(55% and 51% at 4 days of storage, respectively). The results suggest that the studied infusions are safe and a rich 
source of antioxidants, which supports their use in traditional medicine. However, further exhaustive studies of G. 
chiloensis infusion are needed to ensure its safety, as it has shown cytotoxicity. Besides, it is worthwhile to advance 
the study of L. cuneifolia and L. nitida as sources of dietary antioxidants, due to their high antioxidant power and ability 
to protect against lipid peroxidation.
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Introduction
In recent years, the consumption of herbal teas and infu-
sions from a great variety of plants has become popular. 
This fact has been related to their attractive taste and 
flavor and their high content of antioxidants with poten-
tial health benefits (Poswal et  al. 2019). This becomes 
relevant in a context in which more people take care of 
their health and know that diet affects it. For example, 
tea from Camellia sinensis is the second most widely 
consumed beverage in the world after water, and the 
medical benefits of its phytochemicals are well described 
(Chaudhary et al. 2023; Luo et al. 2023). In fact, epigal-
locatechin-3-gallate, which represents more than 50% of 
the total polyphenols present in green tea, has completed 
phase II and phase III clinical trials for the treatment of 
different types of cancer (Tuli et al. 2023). In addition to 
the popular green and black teas, infusions can be made 
with different plant tissues, such as leaves, flowers, roots, 
and barks, among others, and could improve diet qual-
ity. Dietary antioxidants are capable of curbing the sig-
nals that lead to oxidative stress by increasing natural 
defenses and preventing oxidative damage and associated 
diseases (Feng et al. 2023; Martemucci et al. 2022). Abun-
dant experimental and epidemiologic evidence provides a 
convincing argument that polyphenol antioxidants from 
infusions can reduce cancer risk and prevent atheroscle-
rosis, coronary heart disease, and other diseases (Liu 
et al. 2023).

The factors that cause oxidative stress can be present 
in the air, food, medications, cigarette smoke, insecticides 

in foods of plant origin, solar radiation, and cell phone 
radiation, among others (Leni et  al. 2020; Vatner et  al. 
2020; Zheng et  al. 2020). Compelling evidence suggests 
that oxidative stress, resulting from an elevation in reac-
tive oxygen species (ROS) and nitrogen species (NOS), or 
a decline in antioxidant defenses, disrupts the integrity 
and functionality of lipids, proteins, and DNA (Moloney 
& Cotter 2018). This can lead to aging and numerous dis-
eases, including cancer, Parkinson’s disease, Alzheimer’s 
disease, atherosclerosis, liver injury, rheumatoid arthritis, 
type 2 diabetes, and kidney failure, among others (Eguchi 
et  al. 2021; Ionescu-Tucker & Cotman 2021; O’Flaherty 
2020; Pisoschi et al. 2021).

The search for antioxidants based on ethnobotani-
cal knowledge and the floristic richness of a country can 
result in new active principles not detected in any other 
way. Within the Argentinean vascular flora, distributed in 
183 families and 10006 species, approximately 1182 spe-
cies are used in traditional Argentine medicine (Palchetti 
et al. 2023; Zuloaga et al. 2019). In Argentina, including 
the Patagonia region, a wide array of plant species boast-
ing medicinal properties has been documented for their 
potential in addressing various health issues, such as 
liver, intestinal, muscular, and renal conditions, among 
others (Bonilla Bonilla et al. 2023; Carabajal et al. 2021). 
Nonetheless, in many of these species, the composition 
of phytochemicals or the mechanisms involved in these 
effects have not been investigated. Consequently, it 
becomes imperative to rigorously assess both the efficacy 
and safety of these medicinal plants.
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Phenolic compounds, such as tannins, anthocyanins, 
and flavonoids, have antioxidant properties, in many 
cases closely related to anti-inflammatory action, the 
main mechanism involved in the pathogenesis of the 
aforementioned diseases (Chandrasekara & Shahidi 2018; 
Liu et al. 2023). Among the species employed in Argen-
tine folk medicine to address inflammatory disorders, 
we found several noteworthy candidates for in-depth 
investigation. These include Monttea aphylla (Miers) 
Berthan & Hooker (Scrophulariaceae), Mandevilla laxa 
(Ruiz & Pav.) Woodson (Apocynaceae), Larrea cuneifo-
lia Cav. (Zygophyllaceae), Larrea nitida Cav. (Zygophyl-
laceae), Pteromonnina dictyocarpa (Griseb.) B Eriksen 
(Polygalaceae) and Grindelia chiloensis (Corn.) Cabrera 
(Asteraceae). Notably, the chemical composition and 
toxicity profiles of these species remain, at least in part, 
uncharted territory.

According to available bibliographic data, the infusion 
of M. aphylla is traditionally employed in the treatment 
of liver and kidney diseases (Azar 2008; Ladio & Lozada 
2009; Muiño 2011), and G. chiloensis is used to interrupt 
diarrhea and as an anti-inflammatory agent for general-
ized pain (Muiño 2011). Besides, L. cuneifolia and L. 
nitida are used as decongestants, for joint pain, as a dis-
infectant, for gastric conditions, among others (Muiño 
2011; Musaubach & Plos 2015); M. laxa is used as a pur-
gative (Barboza et al. 2009), and P. dictyocarpa as an anti-
diarrheal and digestive (Goleniowski et  al. 2006). Based 
on these ethnomedicinal uses, it becomes meaningful to 
evaluate the chemical composition, antioxidant capac-
ity, and cytotoxicity of these species with potential anti-
inflammatory activity.

Given the great scientific, medicinal, and industrial 
interest in natural antioxidants, the objective of this 
study was to analyze and compare the chemical composi-
tion and antioxidant properties of infusions from native 
plant species traditionally used for medicinal purposes. 
In addition, this work aims to evaluate the biological 
activity of the infusions, with methodologies that ensure 
their possible use as nutraceutical additives. Additionally, 
the use of two infusions as food preservatives was also 
examined.

Materials and methods
Chemical reagents
Dulbecco’s modified essential medium (DMEM), antibi-
otics, reagents, and standards for HPLC were purchased 
from Sigma–Aldrich. HPLC grade solvents were pur-
chased from Fisher Scientific Co. Fetal bovine serum was 
purchased from Natocor (www. natoc or. com. ar). Milli-Q 
water was used in all experiments. PES 0.22 μm sterile fil-
ter units were obtained from GVS, USA.

Plant material
The stems and leaves of M. aphylla, L. cuneifolia, and 
L. divaricata were collected in February between 2017 
and 2022 near Ramos Mexía Reservoir (39°15′19.8"S, 
68°44′48.8"W; Neuquén, Argentina). Leaves of G. 
chiloensis were collected in October between 2016 and 
2022 in the area near the National University of Coma-
hue campus (38°56′22.4"S, 68°3′20.26"W Neuquén, 
Argentina), and leaves of P. dictyocarpa and M. laxa 
were collected in February 2016 in Sierras of Córdoba 
(31°02′45.5"S, 64°27′22.5"W, Córdoba, Argentina). All 
the above species were washed for 30 min and then dried 
in an environment at 20  °C with < 30% humidity and 
protected from light for 20  days. Once dry, they were 
crushed with a coffee grinder. Samples were labeled and 
stored in a dry place in plastic bags.

Infusion preparation
Infusions of each species were prepared with differ-
ent volumes of water, depending on the water absorp-
tion capacity of the grinding. Infusions of P. dictyocarpa 
(PD) and M. laxa (ML) were prepared using 12 g of plant 
material in 250 mL of boiled water; those of G. chiloen-
sis (GC) with 12 g of plant material in 150 mL of boiled 
water; and those of M. aphylla (MA), L. cuneifolia (LC) 
and L. nitida (LN) with 12 g of plant material in 50 mL 
of boiled water. On the other hand, two infusions blends 
of species used in traditional medicine for anti-inflam-
matory purposes were prepared by mixing 1:1 v/v G. 
chiloensis and M. aphylla (GC + MA) and G. chiloensis 
and L. cuneifolia (GC + LC). The infusions were regularly 
prepared with water at 100 °C, subsequently cooled, and 
left to macerate for 24 h at room temperature. Then, infu-
sions were filtered through a 10-μm pore nylon filter and 
stored in a freezer at -80 °C until use. For each spectro-
photometric determination, the infusions were diluted 
to ensure that the obtained values fell within the range of 
the respective standard curves.

Ferric reducing antioxidant power (FRAP) assay
The Benzie and Strain (Benzie & Strain 1996) proto-
col with minor modifications (Gallia et  al. 2020) was 
employed to study the FRAP activity of the infusions. 
An aliquot of 50 μL of the sample was added to 950 μL 
of FRAP reagent. FRAP reagent was prepared by mix-
ing 2.5  mL of 10  mM TPTZ (2,4,6-tri(2-pyridyl)-s-tria-
zine) solution in 40  mM hydrochloric acid with 2.5  mL 
of 20  mM  FeCl3.6H2O and 25  mL of 300  mM sodium 
acetate buffer pH 3.6. The reaction mixture was incu-
bated at 37  °C in the dark for 7  min. After that, the 
absorbance was measured at 595 nm in a T60UV–Visible 

http://www.natocor.com.ar
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Spectrophotometer (PG Instruments Limited), and the 
results were expressed as ascorbic acid equivalents per 
milligram of dry weight (μg AAE/mg DW).

Free radical scavenging capacity (DPPH assay)
The free radical scavenging ability of the infusions was 
tested by the DPPH (2,2-diphenyl-1-picryl-hydrazyl) rad-
ical scavenging assay, based on the method described by 
Krishnan et al. (2015), with some modifications. A DPPH 
radical (0.8 mM) solution in 95% ethanol was prepared. 
A 50-μL aliquot of infusion was mixed with 125 μL of 
DPPH radical solution and 625 μL of 1:1 distilled water 
and ethanol solution. The mix was shaken vigorously, and 
the absorbance was recorded against a blank of ethanol 
without DPPH. The kinetics of the reactions were moni-
tored at 515 nm in a T60UV–visible spectrophotometer 
until no further decrease in absorbance was observed. 
The percentage of inhibition of DPPH was calculated 
according to the following expression: DP = [(A0–At)/
A0]*100, where  A0 is the initial absorbance of DPPH (0% 
inhibition), and  At the time “t”, absorbance after the infu-
sion mixture has been produced. Data were expressed 
using an index known as antiradical efficiency (AE) 
described by Sanchez-Moreno et  al. (1998), with some 
modifications. This index consists of two parameters: the 
 EC40, which is the concentration of antioxidants neces-
sary to inhibit the initial amount of the radical by 40%, 
and the  tEC40, which is the time that this concentration 
of antioxidants inhibits 40% of the radical. With these 
two parameters, the following index was built: AE = 1/
(EC40 x  tEC40).

Determination of total phenolic content (TPC)
The total phenolic contents of the infusions were meas-
ured by the Folin–Ciocalteu method according to Gallia 
et al. (2020). Briefly, 50 μL of infusion was mixed with 625 
μL of sodium carbonate (20%, w/v), 200 μL of ultrapure 
water, and 125 μL of Folin–Ciocalteu reagent (1 N). After 
30  min in the dark, the absorbance was measured at 
760 nm in a T60UV–visible spectrophotometer. TPC was 
expressed as μg of gallic acid equivalents per milligram of 
dry weight (μg GAE/mg DW).

Determination of total flavonoid content (TFC)
The total flavonoid contents of the infusions were deter-
mined by the aluminum chloride colorimetric method 
according to Gallia et  al. (2020). The infusions (50 μL) 
were mixed with a solution containing 30 μL of 10% 
sodium nitrite, 60 μL of 20% aluminum chloride hexahy-
drate, 200 μL of 1 N NaOH, and 660 μL of Milli-Q water. 
The absorbance of each sample was recorded at 510 nm 
in a T60UV–visible spectrophotometer and compared 
with those obtained from a standard curve made with 

quercetin. TFC was expressed as quercetin equivalents 
per milligram of dry weight (μg QE/mg DW).

Analysis of phenolic compounds by high‑performance 
liquid chromatography (HPLC)
The determination of phenolic compounds by HPLC 
was carried out in GC, LN, LC, and MA infusions and 
the two blends. ML and PD infusions were not consid-
ered because they presented the lowest levels of TPC. 
The infusions were freeze-dried at -80 °C for 46 h using 
an Beta 2–8 LDplus freeze-dryer (Martin Christ, Gefri-
ertrocknungsanlagen GmbH, Osterode, Germany) until 
achieving proper drying, and then the residue was dis-
solved in ultrapure methanol. All samples, performed 
in duplicate, were filtered through a 0.22  μm filter unit 
before injection. The phenolic profile was determined 
by an HPLC system (Agilent 1260, Quat Pump VL, 
ALS, TCC, DAD, RID, with openLAB Chem Station 
Software), using a ZORBAX Eclipse XDB-C18 column 
(4.6 × 250 mm; 5 μm, Agilent), maintained at 25 °C, with 
a flow rate of 0.5 mL/min and an injection volume of 5 
μL. The mobile phase consisted of 1% phosphoric acid 
(solvent A) and methanol (solvent B). The linear gradi-
ent elution was as follows: 0%–15% B from 0 to 10 min, 
15%–30% B from 10 to 20  min, 30%–45% B from 20 to 
30 min, 45%–60% B from 30 to 40 min, 60%–75% B from 
40 to 50 min and 75%–90% B from 50 to 60 min. Identi-
fication of peaks was carried out by comparison of their 
retention times with those obtained by injecting the fol-
lowing standards under the same conditions: catechin, 
epicatechin, myricetin, kaempferol, quercetin, resvera-
trol, rutin and gallic, ellagic, tannic, chlorogenic, syringic, 
caffeic, p-coumaric, and ferulic acids. All the calibration 
curves presented an  R2 (Coefficient of Determination) 
greater than 0.999. The software used for data processing 
was openLAB Chem Station, Agilent.

Cell culture and cytotoxicity assay
To test the cytotoxicity of the infusions, two commercial 
cell lines were used: VERO (African green monkey Cerco-
pithecus aethiops kidney cells) and MCF-7 (derived from 
a human breast adenocarcinoma). Cells were cultured in 
Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with 10% fetal bovine serum, 100 U/mL penicil-
lin-G, and 40 μg/mL gentamycin sulfate and incubated at 
37 °C in a 5%  CO2 atmosphere (Gallia et al. 2020).

VERO or MCF-7 cells were seeded onto 96-well tis-
sue culture test plates at 6000 cells per well. At 24  h 
post-seeding, the medium was replaced with fresh 
medium containing herbal infusion at a final concentra-
tion of 50, 100, 150, 200, or 400 μg AAE/mg DW or with 
fresh medium only (control). Viable cells were stained 
with crystal violet according to Soria et  al. (2008). The 
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absorbance of each well was read at 630 nm with a Rayto 
RT-2100C micro ELISA reader (Rayto Life and Analytical 
Sciences Co., Ltd. China). The viability percentage was 
defined as the relative absorbance of treated versus con-
trol cells (100%).

Antioxidant activity against lipid oxidation in meat 
samples
Preparation of the raw meat samples
The infusions with greater capacity were selected to 
evaluate lipid oxidation in raw ground beef. Treatments 
consisted of meat mixed with LC or LN infusions, and 
distilled water was used as a control. Infusions or water 
were manually mixed with the meat at a ratio of 1.5 mL/g 
of meat, and then, samples were kept at 4  °C for 2.5  h. 
After that, infusions or water were filtered away from the 
ground beef, and each treatment was wrapped in stop-
pered glass jars and stored for 7  days at 4 ± 1  °C. Two 
replicates of the two treatments and control were carried 
out. The TBARS content was evaluated on days 1, 4, 7, 
and 11 in each sample by duplicate.

Lipid peroxidation
The thiobarbituric acid reactive substance (TBARS) con-
centration was determined using the method described 
by Burri et  al. (2019) with modifications. Briefly, 1  g of 
sample was homogenized with a glass-Teflon homog-
enizer, and then 4  mL of a solution containing 11.7  mL 
water and 0.3 mL 25% TCA was added and mixed. After 
that, the homogenate was mixed with 0.33 mL 96% eth-
anol to precipitate proteins and vortexed vigorously for 
60 s. Then, the sample was incubated in a water bath at 
40 °C for 5 min, and centrifuged at 3000 rpm for 10 min. 
An aliquot of 400 μL of the supernatant was mixed with 
50 μL of butylated hydroxytoluene (0.22%, in ethanol), 
500 μL 0.72% (w/v) thiobarbituric acid solution and, 500 
μL 25% (w/v) TCA solution. The mixture was vortexed 
and incubated in a water bath at 95 °C for 30 min. After 
the mixture was cooled in cold water, 1450 μL chloro-
form: acetic acid solution (2:1) was added, and then, the 
mixture was vortexed and centrifuged at 2500  rpm for 
15 min. The absorbance of the organic phase was meas-
ured at 532 nm in a T60UV–visible spectrophotometer, 
and the results were expressed as μg malondialdehyde/kg 
meat using a standard curve of 1,1,3,3-tetrametoxypro-
pane (TMP).

Results and discussion
Antioxidant capacity
The antioxidant capacity of the analyzed infusions 
measured by FRAP assay is shown graphically in Fig. 1, 
while the results of scavenging capacity obtained with 
DPPH assay are shown in Fig.  2. Both assays were 

used in combination to obtain a more comprehensive 
assessment of antioxidant’s power, since FRAP test is 
more sensitive to compounds that can reduce Fe ions 
and DPPH assay is more sensitive to compounds that 
can donate hydrogen atoms to free radicals (Nwa-
chukwu et  al. 2021). As shown in Fig.  1, the infusion 
blend obtained with G. chiloensis and L. cuneifolia 
(GC + LC; 1:1, v:v) exhibited the highest value of anti-
oxidant capacity measured with the FRAP technique. 
This value was 2.4 times greater than the sum of the 
values obtained by the infusions of each species sepa-
rately (considering that each species contributes 50% in 
the blend). However, this infusion showed an AE lesser 
than the sum of the values corresponding to the infu-
sions of each species separately (Fig.  2). Besides, the 
antioxidant capacity and scavenging capacity of the G. 
chiloensis and M. aphylla blend (GC + MA; 1:1, v:v) 
were significantly lesser than GC + LC blend. Regard-
ing simple infusions, L. cuneifolia (LC) infusion showed 
the greatest antioxidant power determined by both 
methods, with values of 131.93 ± 5.23 μg EAA/mg DW 
and 0.4534  mL/mg s, respectively. These results are 
consistent with the high antioxidant power found in 
infusions and ethanolic extracts of L. cuneifolia leaves 

Fig. 1 Antioxidant capacity, measured by FRAP assay, of infusions 
obtained from Grindelia chiloensis (GC), Larrea cuneifolia (LC), Larrea 
nitida (LN), Monttea aphylla (MA), Pteromonnina dictyocarpa (PD), 
Mandevilla laxa (ML). Blends: G. chiloensis and M. aphylla (GC + MA); G. 
chiloensis and L. cuneifolia (GC + LC). The values are expressed as μg 
AAE/mg DW and represent the mean ± SD of three assays. Different 
letters indicate significant differences (Tukey, p < 0.05)
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in other recent studies (Carabajal et  al. 2017; Lorenzo 
et  al. 2019). Furthermore, its high antioxidant capac-
ity could explain the high values of antioxidant capac-
ity observed in the GC + LC blend. In the present study, 
the antioxidant capacity of the LC infusion determined 
by FRAP assay was followed by that corresponding 
to the L. nitida (LN) and M. aphylla (MA) infusions 
(Fig.  1). However, the latter showed lower values of 
AE than Larrea infusions, suggesting the presence 
of different types of antioxidants. The infusions of G. 
chiloensis (GC), P. dictyocarpa (PD) and M. laxa (ML) 
showed similar values of antioxidant capacity meas-
ured by FRAP assay, though, PD and ML infusions had 
higher scavenging capacity, denoted by higher values of 
AE, than GC infusion (Figs. 1 and 2). It should be noted 
that this is the first report on the antioxidant capacity 
of ML infusion. A previous study on PD infusion (Bor-
neo et al. 2009) has revealed a value of 12.27 μg EAA/
mg DW using the FRAP technique, five times lower 
than the one obtained in the present work (58.19  μg 
EAA/mg DW). Regarding GC infusion, its antioxidant 
capacity can be attributed to the presence of phenolic 

compounds found in this study and described by other 
authors (Gastaldi 2018).

The evidence presented in this section about infusions 
and blends of Argentinian species, is highly relevant 
when evaluated alongside other studies. These studies 
reported AE values ranging from 0.060 to 0.097 mL/mg 
s for red fruits such as strawberries, raspberries, black-
berries, and blueberries (Gramza et  al. 2019); and anti-
oxidant capacity values of 13.67, 9.14, 3.68, and 10.56 μg 
EAA/mg DW for acai berries, mango, pineapple, and red 
cabbage, respectively (Li et al. 2012; Paz et al. 2015).

Phytochemical analysis of infusions
Phenolics and flavonoids are commonly known as the 
major phytochemical compounds with antioxidant capac-
ity, so the total phenolic and flavonoid contents were ana-
lyzed in the infusions (TPC and TFC, respectively). Both 
Larrea infusions showed the highest values of TPC and 
TFC (Figs. 3 and 4), which is closely associated with their 
great antioxidant power, observed in Figs. 1 and 2. In par-
ticular, LC showed a significantly higher content of TPC 
and TFC than LN. TPC value found in LC infusion was 
similar to the one reported in ethanolic extracts by Lor-
enzo et al. (2019), but was higher than the one found in 

Fig. 2 Antiradical efficiency (AE) evaluated by DPPH assay 
of infusions obtained from Grindelia chiloensis (GC), Larrea cuneifolia 
(LC), Larrea nitida (LN), Monttea aphylla (MA), Pteromonnina 
dictyocarpa (PD), Mandevilla laxa (ML). Blends: G. chiloensis and M. 
aphylla (GC + MA); G. chiloensis and L. cuneifolia (GC + LC). The values 
are expressed as mL/mg s, and represent the mean ± SD of three 
assays. Different letters indicate significant differences (Tukey, 
p < 0.05)

Fig. 3 Total phenolic content of infusions obtained from Grindelia 
chiloensis (GC), Larrea cuneifolia (LC), Larrea nitida (LN), Monttea 
aphylla (MA), Pteromonnina dictyocarpa (PD), Mandevilla laxa (ML). 
Blends: G. chiloensis and M. aphylla (GC + MA); G. chiloensis and L. 
cuneifolia (GC + LC). The values are expressed as μg GAE/mg DW 
and represent the mean ± SD of two assays. Different letters indicate 
significant differences (Tukey, p < 0.05)
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infusions obtained using a lower mass-to-volume ratio 
(Carabajal et  al. 2017). Further, Moreno et  al. (2018) 
found values of TPC and TFC in LC and LN alcoholic 
extracts similar to those reported in the present work, as 
well as a significantly higher TPC in LC extract than LN. 

In this sense, it is important to highlight that obtaining 
metabolites of interest using water as a non-toxic solvent 
is a priority to achieve sustainable extraction processes 
(Lajoie et al. 2022).

Considering all the extracts analyzed in this study, 
GC infusion showed intermediate values of TPC and 
TFC (101.31 μg GAE/mg DW and 36.27 μg QE/mg DW, 
respectively), but they were higher than those found by 
other author in infusions obtained using a lower mass-to-
volume ratio (Gastaldi 2018). In the present study, both 
blends containing GC reflected values of TPC and TFC 
corresponding to the sum of the values of the infusions 
separately (considering that each species contributes 
50% in the blend). The lowest values of TPC and TFC 
were found in MA, PD, and ML (Figs. 3 and 4); however, 
the last two named infusions showed high values of AE 
suggesting the presence of non-phenolic antioxidant 
compounds. It is worth noting that the current study rep-
resents the first comprehensive assessment of MA, PD, 
and ML infusions’ chemical characterization.

Identification of phenolic compounds by HPLC
Phenolic compounds are phytochemicals widely reported 
in the scientific literature as antioxidant, antimicro-
bial, and anti-inflammatory agents and exhibit multi-
ple actions in health promotion and disease prevention 
(Dias et al. 2021; Liu et al. 2023; Reis Nunes et al. 2020). 
Phytochemical analysis by HPLC revealed the presence 
of several flavonoids and phenolic acids in the infusions 
(Table  1). Both infusions of Larrea showed caffeic acid, 
quercetin, kaempferol, ferulic acid, and epicatechin, as 
has been reported for other species of the genus (Alonso 
et al. 2023; Espino et al. 2019; Lorenzo et al. 2019; Mar-
rassini et  al. 2021). However, between both infusions, 
only LC contained p-coumaric and chlorogenic acids 
(Table 1). This pair of phenolic acids has been well doc-
umented for its scavenging and antioxidant properties 

Fig. 4 Total flavonoid content of infusions obtained from Grindelia 
chiloensis (GC), Larrea cuneifolia (LC), Larrea nitida (LN), Monttea 
aphylla (MA), Pteromonnina dictyocarpa (PD), Mandevilla laxa (ML). 
Blends: G. chiloensis and M. aphylla (GC + MA); G. chiloensis and L. 
cuneifolia (GC + LC). The values are expressed as μg QE/mg DW 
and represent the mean ± SD of two assays. Different letters indicate 
significant differences (Tukey, p < 0.05)

Table 1 HPLC analysis of individual phenolic compounds of selected infusions and blends

Species: LN: Larrea nitida, LC: Larrea cuneifolia, GC: Grindelia chiloensis, MA: Monttea aphylla. Blends: GC + LC: G. chiloensis and L. cuneifolia; GC + MA: G. chiloensis and M. 
aphylla. DW: dry weight

Phenolic compounds 
(mg/100 g DW)

LN LC GC MA GC + LC GC + MA

Ferulic acid 59.72 ± 4.48 51.67 ± 1.81 n.d 24.15 ± 1.21 26.55 ± 1.33 16.78 ± 1.12

Chlorogenic acid n.d 67.23 ± 2.02 1578.5 ± 149.96 n.d 462.72 ± 39.33 514.14 ± 40.62

Caffeic acid 17.73 ± 0.89 41.47 ± 2.07 6.35 ± 0.32 30.64 ± 1.84 22.50 ± 1.13 22.69 ± 1.13

p-Coumaric acid n.d 75.19 ± 3.76 n.d n.d 41.21 ± 1.65 n.d

Quercetin 9.66 ± 0.58 12.06 ± 0.78 n.d 2.47 ± 0.12 6.85 ± 0.14 2.94 ± 0.04

Kaempferol 0.56 ± 0.03 3.69 ± 0.09 n.d n.d 2.28 ± 0.11 n.d

Epicatechin 677.40 ± 67.74 495.68 ± 44.61 n.d n.d 258.74 ± 19.41 n.d

Syringic acid n.d n.d n.d 19.32 ± 0.97 n.d 27.94 ± 1.40
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(Roychoudhury et al. 2021; Wang et al. 2022). The pres-
ence of these compounds could account for the higher 
antioxidant power observed in the LC and GC + LC infu-
sions in the current study.

Like Larrea infusions, MA infusion contained querce-
tin, ferulic acid, and caffeic acid, though in lower con-
centrations; however, it was the only infusion in which 
syringic acid was detected (Table 1). Regarding GC infu-
sion, two phenolic acids were identified, as previously 
reported by Gastaldi (2018), with a high concentration of 
chlorogenic acid and a low concentration of caffeic acid 
in comparison to the other infusions. As expected, the 
herbal blends, GC + LC and GC + MA, contained all the 
compounds found in the simple infusions (Table 1).

Early effects on cell viability
To determine whether the infusions used in traditional 
medicine are toxic or safe, in vitro tests were carried out 
with the non-tumor VERO cell line. For this, VERO cell 
cultures at approximately 80% confluence were exposed 
to different concentrations of the infusions. The con-
centrations were selected according to their antioxidant 
capacity determined by the FRAP method (Gallia et  al. 
2020). In this way, it was possible to compare the toxic-
ity/safety of infusions with similar antioxidant power. To 
determine if any of these infusions had antitumor activity 
without affecting non-tumor cells, the concentration at 
which most of the infusions showed no toxicity in VERO 
cells (50  μg EAA/mg DW) was tested in MCF-7 cancer 
cell line. The results presented in Fig. 5 demonstrate that 
infusions obtained from most of the species studied did 
not decrease cell viability by more than 20% with respect 
to the control in both cell types, except for GC infu-
sion, which exhibited significant toxicity (p < 0.05). Cer-
tainly, VERO cells exposed to this infusion for two hours 
at a concentration of 50 μg AAE/mg DW showed a 70% 
decrease in the density of adherent (viable) cells with 
respect to the control. MCF-7 cells were more susceptible 
to this infusion, with a decrease in cell viability greater 
than 80% at the same concentration. Similarly, GC + MA 
and GC + LC blends also generated a decrease in cell via-
bility of VERO cells, although not as noticeably (Fig. 5). 
In these cases, the toxicity was lower than expected at the 
concentration of GC used, so this result could be related 
to a protective effect of the infusions of M. aphylla or L. 
cuneifolia, although it would not be sufficient to prevent 
the death of VERO cells at the concentrations tested. 
Unlike what happened in VERO cells, in MCF-7 cells 
the toxicity of GC was completely inhibited by the other 
species in the blend, since no significant differences were 
found with the control; therefore, the protective effect 
of the infusions of M. aphylla or L. cuneifolia would be 
more effective in these tumor cells.

The toxicity of GC infusion was reported for the first 
time by Gastaldi (2018), who found cytotoxic activ-
ity in tumor and non-tumor cells at a concentration of 
1.25 mg/mL of extract, while in this work, greater toxic-
ity was found at a concentration of 0.37 mg/mL. To date, 
there have been no studies reporting which compound or 
combination of compounds is responsible for the toxic-
ity of G. chiloensis in cells. This species has mainly been 
investigated due to its high content of diterpenes and 
other constituents found in the resin of its leaves (Zav-
ala & Ravetta 2001). Hence, these results suggest that G. 
chiloensis infusion would not be a good candidate for the 
search for antitumor agents, mainly due to its high toxic-
ity in non-tumor cells.

Regarding the studied species of the genus Larrea, 
whose infusions are used for their anti-inflammatory, 
antirheumatic, and balsamic properties, among others, 
it has been reported that L. cuneifolia and L. divaricata 
show low toxicity and a protective effect against ROS 
in non-tumor cell lines and toxicity in tumor cell lines 

Fig. 5 Percentage of viability of VERO cells at different concentrations 
of infusions from medicinal plants. Species: G. chiloensis (GC), L. 
cuneifolia (LC), L. nitida (LN), M. aphylla (MA), P. dictyocarpa (PD), M. 
laxa (ML). Blends: G. chiloensis and M. aphylla (GC + MA); G. chiloensis 
and L. cuneifolia (GC + LC). Values represent the mean ± SD of two 
independent experiments performed in duplicate
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(Bongiovanni et al. 2008; Boris et al. 2015; Lorenzo et al. 
2020). In this work, LC infusion did not show toxicity in 
any cell type at the concentrations studied (Figs. 5 and 6). 
L. nitida is a species that has not been widely studied. A 
recent study revealed strong antifungal activity (Moreno 
et al. 2020). Figure 5 shows that LN infusion significantly 
increased the viability of VERO cells at 50  μg EAA/
mg DW, and this effect was maintained with increasing 
concentration. In MCF-7 cells, no significant differences 
were found compared to the control in the concentration 
used (Figs.  6). These results encourage further research 
related to the possible applications of the active princi-
ples present in the LN infusions in the field of patholo-
gies that induce necrosis or neurodegeneration (Uddin 
et  al. 2020). Regarding M. laxa, its antioxidant activity 
and cytotoxicity have also not been previously studied. 
In this study, this infusion did not show significant differ-
ences in cell viability compared to the control at the con-
centrations evaluated. It has been described that extracts 
made from a species of the same genus, M. velame, did 
not show toxic effects in vitro and in vivo (Ribeiro et al. 
2019). In the case of P. dictyocarpa, neither cytotoxic-
ity nor proliferative effect was found, both in VERO 
cells and in MCF-7 tumor cells. In available investiga-
tions, there are no in  vitro studies on its antioxidant or 

cytotoxic activity; however, its antioxidant activity with a 
neuroprotective effect against arsenic exposure has been 
studied in Wistar rats, and it was found that it had no 
toxic effect and showed chemopreventive activity against 
damage induced by this metalloid (Cortez et al. 2012).

Lipid peroxidation
TBARS assay is one of the most common methods for 
measuring the oxidative deterioration of unsaturated 
fatty acids, which results in rancidity and subsequently, 
in food deterioration (Antolovich et  al. 2002; Shahidi 
et al 2020). Raw ground beef samples exposed to LC and 
LN infusions, as well as a control group with water, were 
evaluated for their TBAR substances during 11  days of 
storage. In control samples, MDA levels increased sig-
nificantly from day 4 onwards in comparison to day 1 
of storage (Fig.  7). Besides, from day 1, control samples 
exhibited significantly higher levels of MDA compared to 
samples treated with Larrea infusions, nearly 34% on day 
1, reaching up to 54% on day 11 (Fig.  7). Therefore, the 
addition of antioxidant-rich infusions from Larrea leaves 
significantly decreased meat lipoperoxidation during the 
11  days of storage, and no significant differences were 
found between both tested species. In the present study, 
LC and LN infusions not only have a high antioxidant 

Fig. 6 Percentage of viability of MCF-7 cells incubated with 50 μg 
AAE/mg DW of infusions from medicinal plants and control. Species: 
G. chiloensis (GC), L. cuneifolia (LC), L. nitida (LN), M. aphylla (MA), P. 
dictyocarpa (PD), M. laxa (ML). Blends: G. chiloensis and M. aphylla 
(GC + MA); G. chiloensis and L. cuneifolia (GC + LC). Values represent 
the mean ± SD of two independent experiments performed 
in duplicate. Asterisks indicate significant differences from the control 
(Tukey’s test, p < 0.05)

Fig. 7 Effect of LC and LN infusions on lipid peroxidation in raw 
ground meat incubated for 11 days at 4 °C. Control: meat with water; 
LC: meat with Larrea cuneifolia infusion; LN: meat with Larrea nitida 
infusion. Values of TBARS, expressed as μmol malondialdehyde 
(MDA)/kg meat, represent the mean ± SD of two experiments 
performed in duplicate. Asterisks indicate significant differences 
from the control (Tukey’s test, p < 0.05)
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power but also contain a substantial amount of poly-
phenols. Given that polyphenols have been described to 
possess the capability of disrupting the cascade of lipid 
oxidation chain reactions (Kancheva et  al. 2021; Brown 
et  al. 2019), this may account for the protective effect 
against lipid peroxidation observed in LC and LN infu-
sions. In this context, some in  vitro and food studies 
reported that extracts from species of genus Larrea are 
capable of inhibiting lipid peroxidation and thereby pro-
tecting food from oxidative damage, and this effect has 
been linked to the high content of phenolic compounds 
(Micucci et al. 2011; Peralta et al. 2018). It is noteworthy 
that this report represents the initial exploration of the 
protective effects of LC and LN infusions against lipid 
peroxidation in meat.

Conclusions
This work highlights the significance of understanding 
the antioxidant properties and chemical composition of 
medicinal plant infusions. The results obtained in this 
study lend credence to the traditional use of these infu-
sions in treating inflammatory disorders. Notably, the 
infusions from L. cuneifolia, L. nitida, M. aphylla, M. 
laxa, G. chiloensis, and P. dictyocarpa emerged as rich 
sources of phenolic compounds, particularly flavonoids 
and phenolic acids. Importantly, all these infusions dem-
onstrated robust antioxidant capabilities and exhibited 
no cytotoxicity in either tumor or non-tumor cells, with 
one exception: the infusion from G. chiloensis displayed 
marked cytotoxicity, particularly pronounced in tumor 
cells. This highlights the safety of the studied infusions, 
and sheds light on the necessity for comprehensive inves-
tigations, particularly regarding G. chiloensis infusion, 
to ensure the well-being of herbal medicine consumers. 
Furthermore, the study revealed that L. cuneifolia and L. 
nitida infusions possess the potential to serve as natural 
antioxidants for raw ground meat, effectively inhibiting 
lipid peroxidation. This discovery opens the door to their 
incorporation in meat products, extending their shelf life 
while harnessing the benefits of these plant infusions.
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