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Abstract 

Vinegar is commonly utilized in cooking and food preparation as a flavoring, preservative, and condiment. It can be 
made from various sources, including fruits, grains, and vegetables. This study produced vinegar from a wild edible 
mushroom, Russula delica Fr., using microwave-assisted enzymatic hydrolysis extraction. The nutritional composition, 
bioactivities, microbial quality, and volatile compounds were analyzed in the production process and final vinegar 
product. Sugar syrup as total soluble solids (TSS) and total phenolic content (TPC) were extracted from mushroom 
powder using commercial enzymes and yielded 5.60 ± 0.10°Brix and 7.01 ± 0.06 mg GAE/g substrate, respectively. The 
extracted syrup was rich in amino acids such as aspartic and glutamic acid, with glucose as the main type of sugar. 
Maximum alcohol content at 10.95 ± 0.21% (w/v) with 1.28 ± 0.23 mg GAE/mL TPC was obtained from Saccharomyces 
cerevisiae fermentation after 21 days, while highest acetic acid was obtained at 5.60 ± 0.42% w/v with 1.87 ± 0.14 mg 
GAE/mL of TPC content and 74.85 ± 1.24% of DPPH radical scavenging activity after surface fermentation using Aceto-
bacter aceti TISTR 354. Thirteen volatile compounds, including acids, alcohols, and aldehydes, were found in the wild 
edible mushroom vinegar, contributing to the unique aroma of the product. This study presented the first report 
on the analysis of vinegar from a wild edible mushroom, R. delica Fr. which showed high nutritional value, antioxidant 
activity and volatile compounds, with the potential for future commercial production.
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Graphical Abstract

Introduction
One of the most popular acidic condiments is vinegar, 
mainly acetic acid, obtained from the two-step fermenta-
tion process of alcoholic fermentation followed by acetic 
acid fermentation (Dias et al. 2016; Bae et al. 2022; Zhang 
et al. 2020). Alcoholic fermentation is the anaerobic con-
version of sugars to ethanol by yeast strains such as Sac-
charomyces cerevisiae (Majumder et al. 2022), while acetic 
acid fermentation is the aerobic oxidation of ethanol to 
acetic acid by acetic acid bacteria such as Acetobacter aceti 
(Molelekoa et al. 2018; Sangngern et al. 2020). Historically, 
vinegar has been utilised as a food flavouring, medicine, 
preservative and cleaning agent (Zhang et  al. 2020). Vin-
egar is traditionally fermented from fruits, grains, vegeta-
bles and rice (Li et al. 2014; Lomthong & Saithong 2019; 
Molelekoa et  al.  2018; Sangngern et  al.  2020; Zhang 
et  al.  2020). However, to the best of our knowledge, no 
reports have been published on vinegar generation from 
the wild edible mushroom, R. delica Fr., as a new nutri-
tional bioactive compound.

The edible ectomycorrhizal wild mushroom R. delica 
Fr., also known as milk-white brittlegill and classified 
under the family Russulaceae is a new source for medi-
cal, cosmetic, and food applications (Khatua et al. 2013; 
Oscar et al. 2019). Extracts of Russula spp. were found 
to contain lectins with antioxidant and antibacterial 
properties (Kostić et al. 2020; Yaltirak et al. 2009) that 
potently inhibited the proliferation of cancer cells and 
HIV-1 reverse transcriptase activity (Zhao et al. 2010). 

Consuming this mushroom promotes health benefits; 
however, utility as a health supplement is not well rec-
ognised. According to Oscar et al. (2019), Russula spp. 
contained 17 amino acids, both essential and non-
essential, and could be considered a potential health 
food as well as a source of ingredients for the food 
industry.

Microwave-assisted enzymatic hydrolysis combines 
microwave irradiation that generates heat and enzy-
matic degradation to hydrolyse the substrate, thereby 
increasing hydrolysis efficiency to extract sugar syrup 
and bioactive compounds (Tsubaki et al. 2013). Thong-
poem et al. (2021) found that the application of micro-
wave-assisted starch-degrading enzyme hydrolysis 
for sugar syrup production from unripe banana flour 
increased hydrolysis yield and reduced hydrolysis time 
for incubation.

Heavy metals in vinegar have been widely studied 
because they can come from raw materials and manu-
facturing processes and can be harmful at high concen-
trations (Salman & Shamar 2013; Topdas 2023). Heavy 
metal analysis in the novel substrate or manufacturing 
processes were required to create a safe novel product.

Therefore, here, vinegar production from a wild edi-
ble mushroom, R. delica Fr., was developed by micro-
wave-assisted enzymatic hydrolysis extraction, and 
analysis of the nutritional composition, bioactivities, 
microbial quality, and volatile compounds for further 
applications was carried out.
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Materials and methods
Mushroom and enzyme preparation
Basidiocarps of R. delica Fr. were obtained from Talaad 
Thai Market, Pathum Thani, Thailand and identified by 
morphological features compared to the standard classi-
fication (Kaewgrajang et al. 2020). The mushrooms were 
rinsed twice in tap water, dried at 50 °C in a hot air oven 
for 12  h, powdered using a multipurpose grinder (GM-
800S1, China), filtered through 60-mesh and kept under 
dry conditions. The chemical composition of R. delica Fr. 
was analyzed for protein, starch, fat, hemicellulose, cel-
lulose, lignin, and fiber contents using AOAC methods 
(Helrich  1990), as reported by Noree et  al. (2021) and 
Chorum et al. (2022).

Commercial enzymes purchased from the Reach Bio-
technology Co., Ltd. (Thailand) included liquid xylanase 
 (iKnowZyme® XL) and powdered cellulase  (iKnowZyme® 
Cellulase). The enzymes were kept at -20  °C until 
required (Chaiyaso et al. 2019).

Microorganism and inoculum preparation
Alcoholic fermentation yeasts, Saccharomyces cerevi-
siae sub. burgundy and S. cerevisiae sub. montache were 
obtained from the Institute of Food Research and Prod-
uct Development (IFRPD), Kasetsart University, Thai-
land. The Saccharomyces strains were grown in yeast 
malt (YM) agar slants (3  g/L yeast extract, 3  g/L malt 
extract, 5  g/L peptone and 15  g/L agar supplemented 
with 10 g/L glucose). Each tube of yeast strain in the agar 
slant was mixed in the inoculum medium (100 mL) con-
taining diluted 1:2 mushroom hydrolysis with distilled 
water (adjusted to 22°Brix by sucrose) supplemented with 
diammonium phosphate (DAP) at 1.2  g/L, with the pH 
adjusted to 4.0 using citric acid. After incubation at 30 °C 
for 16 h, 10% (v/v) was used as inoculum for mushroom 
wine fermentation (Sangngern et al. 2020).

The acetic acid bacterium, A. aceti TISTR 354, was 
obtained from the IFRPD, Kasetsart University, Thailand. 
The inoculum was prepared by cultivating the bacte-
rial strain in liquid medium containing 7.0 g mushroom 
powder, 76.0 mL distilled water and 7.0 mL of 95% etha-
nol, modified from Lomthong and Saithong (2019) and 
Sangngern et  al. (2020). The culture was incubated at 
30  °C without shaking for 4 days and used as inoculum 
at 10% (v/v), approximately  108 CFU/mL, on a De Man, 
Rogosa & Sharpe (MRS) agar plate (Saithong et al. 2017).

Microwave‑assisted enzymatic hydrolysis extraction
Response surface methodology (RSM) with central com-
posite design (CCD) was applied to evaluate the produc-
tion of sugar syrup containing phenolic compounds from 
the wild edible mushroom R. delica Fr. The hydrolysis 
reaction was performed in 250  mL Erlenmeyer flasks 

containing 49  mL of cellulase enzyme solution (5% w/v 
in distilled water) and 1.0  mL of liquid xylanase. The 
mushroom concentration (X1) was added to the reaction 
following five levels of central composite design (CCD) 
including 0, + 1, -1, -α and + α, as shown in Table 1. The 
reaction pH was adjusted to 5.5 by 5.0% (v/v) acetic acid 
and subjected to microwave power of 600 W (Thong-
poem et  al.  2021) with different irradiation times (X2) 
(Table 1). All the flasks were incubated at 50 °C without 
shaking for 6  h and total soluble solids (TSS) and total 
phenolic content (TPC) were measured. Statistical analy-
sis of the data was performed using TIBCO® Statistica™, 
as described by Lomthong et  al. (2022). The identified 
optimal mushroom concentration (X1) and microwave 
irradiation time (X2) were used to validate the model in 
250 mL Erlenmeyer flasks.

Upscale mushroom extraction
To upscale microwave-assisted enzymatic hydroly-
sis extraction, the optimal concentration of mushroom 
powder was dissolved in a mixture of enzyme solution 
in a 1.0 L beaker and the pH was adjusted to 5.5 by 5.0% 
(v/v) acetic acid before irradiation in a microwave oven 
at the optimal irradiation time. The reaction was then 
transferred to a glass jar chamber (18 × 18 × 28 cm) with 
a working capacity of 3.0 L of substrate suspension. The 
reaction was incubated at 50 °C without shaking for 6 h 
and samples were taken during interval times to deter-
mine TSS and TPC. The type of sugar syrup at different 
intervals was evaluated by thin-layer chromatography 
(TLC) following the protocol of Sassaki et al. (2008) with 
some modifications.

At the end of the reaction, the mushroom syrup was 
used to determine the amino acid profiles using high-per-
formance liquid chromatography (HPLC) (Agilent, 1100), 
Model RF-10AXL fluorescence detector was used for the 
analysis. Standards of amino acids (Sigma–Aldrich, USA) 
were used in the study (Çevikkalp et al. 2016). The dietary 
fiber was determined using an in-house method based on 
AOAC by the Central Laboratory (Thailand) Co., Ltd.

A scanning electron microscope (SEM) (JEOL, JSM-5410 
LV, Japan) was used to characterize the physical structure 
of the native and digested mushroom powder after washing 
twice with distilled water and drying at 50 °C for 24 h.

Table 1 Experimental levels of the two independent variables 
used in the central composite design (CCD)

Independent variable Level
‑1.414 ‑1 0 1 1.414

X1 Mushroom concentration (g/L) 39.65 50 75 100 110.35

X2 Microwave irradiation time (s) 11.72 20 40 60 68.28
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Alcoholic fermentation
Alcoholic fermentation was performed in a 5.0-L glass 
jar chamber (18 × 18 × 28 cm) following Sangngern et al. 
(2020) with three concentrations of mushroom syrup 
diluted with distilled water (undiluted: 1:1 and 1:2). 
Sucrose was added to the reaction to attain the same ini-
tial concentration at 22°Brix by Pearson’s square method. 
The process was supplemented with diammonium phos-
phate (DAP) at 1.2  g/L and potassium metabisulphite 
(KMS) at 350  ppm, with citric acid used to reduce the 
pH to 4.0. Before adding yeast inoculum, the reaction 
tanks were kept at room temperature for 24 h. S. cerevi-
siae inoculum was subjected to the fermentation tank at 
a ratio of 10% (v/v) and incubated under static fermenta-
tion for 21 days at 30 °C. At the end of the fermentation, 
samples were taken to determine TSS, TPC, pH and 
alcohol content.

Vinegar fermentation
The mushroom wine was used as a substrate for vin-
egar fermentation with A. aceti TISTR 354 through 
surface culture fermentation following the method 
of Saithong et  al. (2017). One hundred milliliters of 
a starter culture of A. aceti TISTR 354 was added to 
stainless-steel trays that contained 300  mL of each 
mushroom wine (1:1 and 1:2 dilutions of mushroom 
syrup) and 600 mL of mushroom syrup (5.0°Brix). The 
trays were covered by plastic sheets with punched 
holes and incubated at room temperature (30 ± 2  °C) 
for 3 days. The reaction was then added to the mush-
room wine at 1.0 L to continue acetic acid fermenta-
tion for 4–5  days. Samples were taken to determine 
alcohol content, acidity as acetic acid, TPC, and DPPH 
radical-scavenging activity. An inductively coupled 
plasma mass spectrometric (ICP–MS) and induc-
tively coupled plasma optical emission spectrometry 
(ICP OES) procedures have been developed to deter-
mine trace elements or heavy metals in this study, as 
reported by Castineira et  al. (2001) and Bressy et  al. 
(2013). The contaminated microorganisms were deter-
mined using an in-house method based on AOAC 
according to the Notification of the Ministry of Public 
Health No.416 by the Central Laboratory (Thailand) 
Co., Ltd.

A headspace gas chromatography-mass spectrometer 
(GC–MS) (HS-20, Shimadzu, Japan) with an HP-5MS 
column (30  m × 320  µm, 0.50  µm) was used to analyze 
the volatile compounds in the mushroom vinegar, as 
reported by Liu et al. (2019). Helium carrier gas (purity 
99.999%) was applied with a constant flow of 1.52  mL/
min and the scanning range was 35 to 500 amu. The area 
related to the internal standard of each volatile com-
pound was used to quantify each substance.

Analysis
Total soluble solids (TSS)
A refractometer (RA-250WE, Kyoto, Japan) was used to 
determine the total soluble solids (TSS) content of the 
samples, as reported by Sangngern et al. (2020).

Total phenolic content (TPC)
A sample aliquot of 200 μL was added to 1.0 mL of Folin-
Ciocalteu reagent, diluting 1:10 with distilled water. Next, 
800 μL of sodium carbonate  (Na2CO3) and distilled water 
were added to create a final volume of 5  mL. After 2  h 
of incubation, the absorbance of the reaction was deter-
mined at 760 nm. Results were displayed as milligrams of 
gallic acid equivalent per gram of substrate (mg GAE/g 
substrate) using gallic acid as the standard (Butsat & 
Siriamornpun 2010).

DPPH radical‑scavenging assay
The DPPH radical-scavenging activity (%) was determined 
following Sripo et  al. (2016) by mixing 1.0  mL of DPPH 
with 1.0 mL of appropriately diluted samples. After shak-
ing, the mixtures were incubated at room temperature 
for 1.0 h in the dark and absorbance was measured with 
a UV–Vis spectrophotometer at 517 nm. To compute the 
DPPH (%), the control reaction with a DPPH solution 
without a sample and a blank sample containing distilled 
water was employed and calculated as shown below.

Alcohol content
The alcohol content of the samples was evaluated by an 
ebulliometer (Dujardin-Salleron, Paris, France), as reported 
by Sangngern et al. (2020) and (Kocabey et al. 2016).

pH and acetic acid acidity
A pH meter (Model 430; Corning, NY, USA) was used to 
measure the pH of the medium and samples, while the 
titratable acidity was determined as acetic acid for vin-
egar using phenolphthalein as an indicator and titrating 
the vinegar with 1N NaOH (Helrich 1990).

Acetic acid analysis
High-performance liquid chromatography (HPLC) was 
used to analyze acetic acid in the mushroom vinegar fol-
lowing the method of Mullin and Emmons (1997).

Statistical analysis
All results were calculated as mean ± SD (standard devia-
tion). Mean values, standard deviation, and analysis of 
variance (ANOVA) were computed to evaluate statisti-
cally significant values.

DPPH(%) = Acontrol − Asample /Acontrol × 100
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Results and discussion
Microwave‑assisted enzymatic hydrolysis extraction
The chemical composition of wild edible mushroom, R. del-
ica Fr. powder (Table 2) gave high protein (30.53 ± 0.07%), 
hemicellulose (25.13 ± 0.04%) and cellulose (15.39 ± 0.02%) 
indicating potential substrate application for production of 
sugar syrup containing nutrient by enzymatic hydrolysis. 
The mushroom had high fiber (15.52 ± 0.01%) with smaller 
amounts of starch (0.06 ± 0.01%), fat (2.41 ± 0.05%) and 
lignin (1.08 ± 0.01%). Ouzouni et al. (2009) reported that R. 
delica collected from West Macedonia and Epirus, Greece 
contained high protein 26.10 ± 0.30%, fat 4.44 ± 0.04% and 
ash 5.61 ± 0.03%. Therefore, R. delica could be used as an 
essential nutritional source with high protein, carbohy-
drate, and mineral contents.

Response surface methodology (RSM) with central 
composite design (CCD) was used to investigate the two 

independent variables affecting sugar syrup phenolic com-
pound extraction, including mushroom concentration (X1) 
and irradiation time (X2). The extraction process was oper-
ated at pH 5.5 and 50  °C without shaking as described in 
the method. These are the optimum pH and temperature 
for enzyme activities as recommended by the product 
instructions. Extraction with high enzyme activity yields a 
high amount of sugar syrup and total phenolic compounds, 
which influence the quality of the final vinegar product. 
Results of TSS and TPC production from each experimen-
tal run are shown in Table 3. The highest TSS and TPC val-
ues were found at the center point of the CCD (75 g/L of 
mushroom concentration and 40 s of irradiation time). The 
matrix result of CCD was subjected to STATISTICA 10 for 
Windows™ to analyze the data and construct second-order 
polynomial equations to predict the model, as shown by the 
following equations for Y1 and Y2.

where Y1 and Y2 are the predicted responses of TSS 
and TPC respectively and X1 and X2 are the coded val-
ues of mushroom concentration and irradiation time 
respectively.

Results of the experimental matrix were checked by 
the t-test and analysis of variance (ANOVA) revealed 
that p-values of mushroom concentration (X1) and irra-
diation time (X2) were 0.0008 and 0.0142 respectively for 
TSS production (Table 4). The p-value is a statistical test 
that determines the probability of statistical hypothesis 
test results, which aids in determining the significance 
of the study’s parameters. Lower values than 0.05 indi-
cate that these factors significantly impact the study’s 

Y1 = −13.6075+ 0.3649X1 + 0.2034X2 − 0.0019X1X1 − 0.0016X2X2 − 0.0011X1X2

Y2 = −1.40902+ 0.15626X1 + 0.05421X2 − 0.00082X1X1 − 0.00047X2X2 − 0.00016X1X2

Table 2 Chemical composition of wild edible mushroom, 
Russula delica Fr

Note: Values are averages of three determinations

Component (%) Analysis (%)

Starch 0.06 ± 0.01

Protein 30.53 ± 0.07

Fat 2.41 ± 0.05

Fiber 15.52 ± 0.01

Ash 6.30 ± 0.04

Hemicellulose 25.13 ± 0.04

Cellulose 15.39 ± 0.02

Lignin 1.08 ± 0.01

Table 3 Experimental design used in the response surface methodology with two independent variables for the production of sugar 
syrup and TPC content: substrate concentration (X1) and microwave irradiation time (X2)

Note: Values are averages of three determinations

Run Level Actual level TSS (oBrix) TPC (mg GAE/ g)

X1 X2 X1 X2 Observed Predicted Observed Predicted

1 0 -1.414 75 11.72 4.43 ± 0.35 4.37 6.18 ± 0.20 6.14

2 1 -1 100 50 3.93 ± 0.14 4.77 6.62 ± 0.23 6.789

3 -1 -1 50 20 2.00 ± 0.00 2.27 4.96 ± 0.09 5.10

4 1.414 0 110.35 40 4.67 ± 0.35 4.48 6.67 ± 0.31 6.59

5 -1.414 0 39.65 40 1.93 ± 0.14 1.76 4.89 ± 0.19 4.66

6 1 1 100 60 4.43 ± 0.57 3.96 6.60 ± 0.21 6.64

7 -1 1 50 60 3.00 ± 0.00 3.15 5.17 ± 0.21 5.43

8 0 1.414 75 68.28 4.03 ± 0.35 4.05 6.61 ± 0.09 6.40

9 0 0 75 40 5.67 ± 0.28 5.47 6.59 ± 0.19 6.65

10 0 0 75 40 5.53 ± 0.14 5.47 6.74 ± 0.09 6.65

11 0 0 75 40 5.53 ± 0.14 5.47 6.69 ± 0.13 6.65
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final goal (Dahiru  2008; Lomthong et  al.  2022). Results 
suggested that mushroom concentration and irradiation 
time significantly affected sugar syrup production at 95% 
significance level (p < 0.05). For TPC content, p-values of 
mushroom concentration (X1) and irradiation time (X2) 
were 0.0012 and 0.0861 respectively (Table  4), suggest-
ing that mushroom concentration had a significant effect 
on TPC production at p < 0.05. The coefficients of deter-
mination (R2) for TSS and TPC were 0.9365 and 0.9594 
respectively and acceptable for application as models in 
this study (Table 4).

Figure 1 shows contour and three-dimensional plots of 
the interaction between mushroom concentration (X1) 
and irradiation time (X2). Maximum TSS and TPC con-
tent from the hydrolysis of mushroom powder by micro-
wave-assisted enzymatic hydrolysis extraction ranged 80 

to 90 g/L mushroom concentration and 30 to 50 s irradia-
tion time. Beyond these values, TSS and TPC fell below 
the optimal levels.

Microwave-assisted enzymatic hydrolysis has long 
been recognized as a promising and powerful method 
for extracting bioactive components from plant materials 
(Cheng et al. 2015). The main mechanisms of microwave 
irradiation that improve yield extraction involve ionic 
conduction and dipole rotation, which result in power 
dissipation within the solvent and substrate, subsequently 
causing molecular movement and heating (Chen et  al. 
2008). Microwave irradiation causes structural distur-
bances on the substrate, resulting in a larger contact area 
between the solid and liquid phases, with improved sol-
vent access to essential components (Cheng et al. 2015). 
Xiao et  al. (2008) reported that microwave irradiation 
time affected flavonoid extraction from Radix Astragali, 
while Cheng et al. (2015) reported that microwave irra-
diation time greatly impacted the extraction yield of pol-
ysaccharides from the fruit of Schisandra chinensis Baill. 
Cheong et al. (2016) also found that microwave treatment 
irradiation time affected the extraction yield of polysac-
charides from a novel Cordyceps sinensis.

From the prediction equations (Y1 and Y2), mushroom 
concentration and irradiation time were optimized at 
85  g/L and 40  s respectively, giving predicted values of 
TSS and TPC at 5.52°Brix and 6.82 mg GAE/g substrate 
respectively. Model validation was performed under the 
same conditions, with results giving 5.60 ± 0.09°Brix and 
6.81 ± 0.08 mg GAE/g substrate of TSS and TPC respec-
tively and close to the predicted values. The validation 
results suggested that models obtained from this study 

Table 4 Summary of the analysis of variance (ANOVA)

sig  means p-value less than 0.05 indicating that the model term is significant at 
95%

Factor TSS TPC

T‑statistic p‑value T‑statistic p‑value

Model -5.3837 0.0029 sig -1.2105 0.2801

X1 7.0727 0.0008 sig 6.5769 0.0012 sig

X2 3.6849 0.0142 sig 2.1324 0.0861

X1
2 -5.8168 0.0021 sig -5.4966 0.0027 sig

X2
2 -3.1438 0.0255 sig -2.0573 0.0947 

X1 X2 -1.8575 0.1223 -0.5668 0.5953

R2 0.9365 0.9594

Adjusted R2 0.8729 0.9188

Fig. 1 Response and contour plots of the combined effects between substrate concentration (g/L) and microwave irradiation time (s) on TSS 
and TPC contents from the hydrolysis of mushroom powder. a TSS and b TPC



Page 7 of 12Saithong et al. Food Production, Processing and Nutrition            (2024) 6:50  

fitted and were suitable to apply for TSS and TPC pro-
duction from the hydrolysis of mushroom powder by 
microwave-assisted enzymatic hydrolysis extraction.

Upscale mushroom extraction
The results of sugar syrup contained in phenolic com-
pounds in a glass jar chamber with a working capacity of 
3.0 L of substrate suspension are presented in Fig. 2. Total 
soluble solids (TSS) and total phenolic content (TPC) 
increased during incubation and showed a maximum 
at 5.60 ± 0.1°Brix and 7.01 ± 0.07  mg GAE/g substrate 
(Fig. 2). The main type of sugar found in the mushroom 
syrup was analyzed by thin-layer chromatography (TLC) 
as glucose, as shown in Fig. 3. The predominance of glu-
cose in the sugar syrup, the simplest form of sugar, may 
support the growth of yeast and acetic acid bacteria in 
wine and acetic acid fermentation processes. Moreover, 
glucose was converted to various organic acids, alcohols, 
and aldehydes via the metabolic activities of yeast and 
acetic acid bacteria, contributing to the product’s unique 
aroma (Lynch et al. 2019).

The amino acid profiles generated from the extrac-
tion of wild mushroom, R. delica are given in Table  5. 
Results showed that aspartic acid and glutamic acid were 
the main amino acids in the sample at 249.07 ± 0.01 and 
230.36 ± 0.02  mg/100  g sample, respectively, with lesser 
amounts of serine, glycine, threonine, alanine, and pro-
line. Glutamic acid and aspartic acid were commonly 
used in food as flavor enhancers. The high levels of glu-
tamic acid and aspartic acid in mushroom syrup contrib-
ute to the good taste of the vinegar’s final product. Oscar 
et al. (2019) published the amino acid profile of dried R. 
delica, finding 11 amino acids in the mature stage, the 

amount of glutamic acid was found at 0.44 mg/100 g of 
dried mushrooms, which is less than in this study. Die-
tary fiber was recorded at 2.68 g/ 100 g sample. Scanning 
electron micrographs of native and digested mushroom 
powders are shown in Fig.  4. The native mushroom 
powder granules were round and rough (Fig.  4a) and 
became swollen after irradiation (Fig.  4b). When a sub-
strate is exposed to microwave radiation, its structure is 
altered, which improves solvent access to crucial internal 

Fig. 2 Amount of TSS and TPC contents during the hydrolysis at different incubation times. Where error bars =  ± SD; different lowercase letters 
above the bar indicate significant (p < 0.05) difference among means

Fig. 3 TLC chromatogram of mushroom syrup after hydrolysis 
by the microwave-assisted enzymatic hydrolysis extraction process 
at 50 °C for 6 h. G1: glucose, G2: maltose and G3: maltotriose
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components (Cheng et al. 2015). The mushroom powder 
then swelled as a result of the radiation. (Fig.  4b). The 
reaction was then incubated at 50  °C for the hydrolysis 
by mixed enzyme after the microwave oven irradiation 
was completed. The granule structure was destroyed 
after enzyme treatment for 3 and 6 h (Fig. 4c-d), confirm-
ing the potential of the microwave-assisted enzymatic 
hydrolysis process.

Alcoholic fermentation
The mushroom syrup was diluted with distilled water to 
determine the effect of bioactive compounds on the qual-
ity of wine production and the possibility of cost reduc-
tion. Results showed that the highest alcohol content at 
10.95 ± 0.21% was obtained from the fermentation of 
diluted (1:1) mushroom syrup, as shown in Fig. 5a. Total 
phenolic content (TPC) and DPPH radical-scavenging 
activity were at 1.28 ± 0.23 mg GAE/mL and 69.30 ± 2.48% 
respectively. Undiluted syrup showed lower alcohol con-
tent (5.20 ± 0.28%) due to the high amount of antioxida-
tive compounds (80.26 ± 1.48% DPPH radical-scavenging 
activity), which impacted the growth and fermentation of 
the yeast strain, while the undiluted mushroom syrup was 
viscous, affecting mass transfer in the reaction. Türkoğlu 
et  al. (2007) reported that R. delica extracts showed 
high DPPH free radical scavenging activity (207.09  µg/
mL) and high total phenolic content (47.01 ± 0.29  µg/
mg pyrocatechol equivalents), total flavonoid content 
(8.71 ± 0.56  µg/mg quercetin equivalents) and antimi-
crobial activity against various microorganisms includ-
ing pathogenic yeast specie, while Yaltirak et  al. (2009) 
reported antimicrobial activity against some of the tested 
foodborne and spoilage bacteria and found catechin, 
rutin, caffeic acid and gallic acid as the main phenolics 
of R. delica ethanolic extract. The high concentration of 
phenolic compounds in undiluted mushroom syrup may 

Table 5 Amino acid profiles of wild edible mushroom, Russula 
delica Fr. after hydrolysis by the commercial enzyme at 50 °C for 
6 h

Note: ND Not Detected

Amino acid Content 
(mg/100 g 
sample)

Amino acid Content 
(mg/100 g 
sample)

Aspartic acid 249.07 ± 0.01 Tyrosine 113.27 ± 0.01

Glutamic acid 230.36 ± 0.02 Valine 109.0 ± 0.02

Serine  < 100 Methionine ND

Glycine 147.52 ± 0.01 Cystine ND

Histidine  < 100 Isoleucine  < 100

Arginine  < 100 Leucine 103.76 ± 0.01

Threonine  < 100 Phenylalanine  < 100

Alanine  < 100 Lysine  < 100

Proline  < 100 Tryptophan 186.24 ± 0.01

Hydroxylysine ND Hydroxyproline ND

Fig. 4 Scanning electron micrographs of native and digested mushroom powder. a Native, b After microwave irradiation, c After hydrolysis for 3 h. 
and d After hydrolysis for 6 h
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have an impact on alcoholic yeast growth, which would 
lower the amount of alcohol that is produced during wine 
fermentation. Therefore, mushroom wines from the fer-
mentation of diluted mushroom syrup (1:1 and 1:2) were 
used as substrates for vinegar fermentation.

Vinegar fermentation
The maximum acidity as acetic acid was found at 
5.60 ± 0.42% w/v when using diluted mushroom wine 
(1:1 of mushroom syrup), as shown in Fig. 5b, while TPC 
was 1.87 ± 0.14  mg GAE/mL with 74.85 ± 1.24% DPPH 
radical-scavenging activity. The acetic acid and alcohol 
content were qualitatively and quantitatively analyzed 
by HPLC as described above at 5.28% with 0.4% alcohol 
content, indicating that acetic acid was the main organic 
acid in mushroom vinegar. The mushroom vinegar con-
tained tryptophan, glutamic acid, aspartic acid and pro-
line as the main amino acids at 86.24 ± 0.01, 34.69 ± 0.02, 
29.55 ± 0.01 and 23.35 ± 0.01  mg/100  mL, respectively 
(Table 6). Liu et al. (2019) found that glutamic acid and 

aspartic acid contributed to the umami flavor of vinegar, 
while proline contributed to the sweet flavor. Vinegar 
derived from the wild edible mushroom, R. delica was 
a novel functional seasoning product containing amino 
acids, phenolic compounds and radical scavenging bioac-
tivity for use in the food industry.

The heavy metals and contaminated microorganisms 
in mushroom vinegar are shown in Table 7. Arsenic (As), 
lead (Pb), mercury (Hg) and tin (Sn) were not found, 
while copper (Cu) and zinc (Zn) were present in small 
amounts (1.42 and 7.58 mg/L respectively) and less than 
the standard values of the Thai Ministry of Public Health. 
Ouzouni et al. (2009) reported that the wild edible mush-
room, R. delica contained small amounts of Cu and Zn 
at 51.71 ± 0.30 and 56.58 ± 0.54 mg/kg respectively in the 
dried fruiting body, while Çayır et al. (2010) found that R. 
delica contained Cu and Zn at 37.07–164.2 and 33.45–
100.17 mg/kg respectively. For contaminated microorgan-
isms, all total plate counts, and pathogenic bacteria met 
the standard values of microorganisms in foods (No. 416).

Fig. 5 Change of chemicals during alcoholic (a) and vinegar fermentation (b) from wild edible mushroom
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The GC–MS analysis identified 13 volatile compounds 
in wild edible mushroom vinegar, as shown in Table  8. 
The sample contained acids, aldehydes, ketones, esters, 
and alcohols. The main compounds were acetic acid and 
alcohol. Liu et  al. (2019) reported that alcohols, acids, 
esters, and aldehydes contributed to the unique aroma 
of vinegar products. Isobutyl acetate and isopentyl ace-
tate provided fruity and floral aromas (Liu et  al.  2019). 
This result confirmed that vinegar produced from the 
wild edible mushroom, R. delica, showed potential as 
an alternative vinegar with health benefits from the high 
values of nutrients and antioxidants, while also being 
safe from contaminated heavy metals and pathogenic 
microorganisms.

Conclusion
This study presented the first report on applying a wild 
edible mushroom, R. delica, as a novel substrate for wine 
and vinegar production with high nutritional value using 
microwave-assisted enzymatic hydrolysis. The obtained 
mushroom vinegar showed high nutritional values and 

was rich in amino acids and antioxidant activities. A 
total of fourteen amino acids were found in the mush-
room vinegar, with tryptophan, glutamic acid, aspartic 
acid, and proline being the main amino acids that have 
contributed to the vinegar’s umami and sweet taste. The 
TPC content and DPPH radical scavenging activity of the 
obtained mushroom vinegar were found at 1.87 ± 0.14 mg 
GAE/mL and 74.85 ± 1.24% respectively. The heavy met-
als of arsenic (As), lead (Pb), mercury (Hg), and tin (Sn) 
were not found in the sample while less amount of cop-
per (Cu) and zinc (Zn) were present with meet to the 
Thai Ministry of Public Health standards as same as the 
contaminated microorganisms, indicating that the novel 
mushroom vinegar from this study is safe and could be 
used in commercial applications.
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Table 6 Amino acid contents of wild edible mushroom vinegar

Note: ND Not Detected

Amino acid Content (mg/100 mL) Amino acid Content (mg/100 mL)

Aspartic acid 29.55 ± 0.01 Tyrosine 11.69 ± 0.01

Glutamic acid 34.69 ± 0.02 Valine 10.61 ± 0.01

Serine 18.71 ± 0.01 Methionine ND

Glycine 15.95 ± 0.01 Cystine ND

Histidine ND Isoleucine ND

Arginine 17.67 ± 0.02 Leucine 14.06 ± 0.01

Threonine 22.16 ± 0.01 Phenylalanine 13.19 ± 0.01

Alanine 17.28 ± 0.01 Lysine 12.23 ± 0.01

Proline 23.35 ± 0.01 Tryptophan 86.24 ± 0.01

Hydroxylysine ND Hydroxyproline ND

Table 7 Chemical and microbiological compositions of the wild 
edible mushroom vinegar

Analysis Result Standard value

Heavy metal Arsenic (As) ND  < 2.0 mg/L

Copper (Cu) 1.42 mg/L  < 2.0 mg/L

Lead (Pb) ND  < 1.0 mg/L

Mercury (Hg) ND  < 0.02 mg/L

Tin (Sn) ND  < 250 mg/L

Zinc (Zn) 7.58 mg/L  < 100 mg/L

Microorganism

 Clostridium perfringens  < 10 CFU/mL  < 100 CFU/mL 

 Salmonella spp. ND ND

 Staphylococcus aureus ND  < 100 CFU/mL

Total plate count  < 1.0 CFU/mL  < 500 CFU/mL

Table 8 Volatile compounds analysis in wild edible mushroom 
vinegar

Retention time Name of compound Percentage (%)

1.267 Acetaldehyde 0.25

1.326 Ethanol 5.18

1.390 Acetone 0.10

1.673 Acetic acid 57.65

1.740 Ethyl Acetate 15.38

1.816 Isobutyl alcohol 0.48

2.449 3-Hydroxy-2-butanone 0.09

2.742 Isopentyl alcohol 0.47

2.800 2-Methyl-1-butanol 0.21

3.295 Isobutyl acetate 0.03

4.146 3-Methylbutanoic acid 0.08

4.284 2-Methylbutanoic acid 0.04

4.825 Isopentyl acetate 0.03
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