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Abstract 

The quality and safety of food can be evaluated using a variety of conventional and scientific methods. But all of those 
ways are time-consuming, laborious, and harmful. There are two primary types of processes used to gauge the qual-
ity and safety of foods: 1) Destructive methods (like gas chromatography, high performance liquid chromatography, 
enzyme linked immuno-sorbent assay, etc.); and 2) Non-destructive methods (such imaging methods, computer 
vision systems, fourier transform infrared spectroscopy, and near infrared spectroscopy). Techniques for imaging are 
frequently employed in the food industry to assess external quality. Imaging is the process of visualizing an object, 
while spectroscopy is the study of how energy is transferred from light to matter. Spectroscopy and imaging are used 
in the hyper spectral imaging approach. A method that may offer both spectral and spatial information about a com-
ponent is called hyperspectral imaging (HSI). The HSI creates a hypercube out of spectral pictures at more than ten 
different wavelengths. A hypercube has three dimensions: two spatial (the x and y axes) and one spectral (λ). Fruits 
and vegetables, dairy goods, meat products, seafood, grains, and legumes are all evaluated for quality and safety 
using HSI. The HSI approach is excellent for identifying both internal and exterior food problems. Anthocyanin 
in grapes, Penicillium digitatum in mandarins, melamine in milk powder, and the amount of fat in cheese can all be 
detected using HSI. In addition to recognizing the muscles in lamb meat, HSI may also be used to assess the colour, 
pH, and tenderness of beef, the colour, pH, and drip loss of pork, and the presence of E. coli in pork. Additionally, HSI 
is utilized to identify Aspergillus niger in wheat and Aflatoxin  B1 in maize. Chemometric instruments are essential to HSI. 
Large data storage and fast processors are needed. Improved models are required for quick and simple evaluation. 
The HSI has limits when it comes to microbiological contaminants’ metabolites detection and quantification, model 
optimization, and the development of more reliable models. Validation of developed models on several storage con-
ditions. Combining HSI with Raman microscopic imaging (RMI) and fluorescence microscopic imaging (FMI) improves 
the ability to analyze microbes.
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Graphical Abstract

Introduction
For every food that is sold on the market, microbiologi-
cal safety and quality issues are crucial. There are numer-
ous requirements for the food’s microbial safety and 
quality before it may be exported. For both food imports 
and exports, each nation developed its own standards. 
There are numerous traditional and instrumental meth-
ods for assessing the quality and safety of food products. 
There are two types of techniques: destructive and non-
destructive. Destructive techniques are those in which 
the sample used for the analysis is not further used for 
another purpose, and non-destructive techniques are 
those in which the sample is still useable after being 
analyzed. Except for a few spectroscopic techniques like 
Near-infrared spectroscopy (NIRS) and Fourier trans-
form infrared (FTIR), the majority of traditional and 
experimental techniques (High-performance liquid 
chromatography (HPLC), Gas chromatography (GC), 
enzyme-linked immunosorbent assay (ELISA), and other 

conventional methods) are destructive. However, almost 
all of them take a lot of time, are laborious, and have a 
higher potential of human or machine error. Chemical 
reactions resulted in the creation of several waste prod-
ucts, and nearly all destructive techniques have a consid-
erable possibility of creating biological hazards. Studies 
on recently developed non-destructive techniques have 
grown in popularity over the past 20  years among sci-
entists and researchers. According to ElMasry and Sun 
(2010), a promising non-destructive analytical method 
for evaluating the safety and quality of food products is 
the hyperspectral imaging approach. hyperspectral imag-
ing combines imaging and spectroscopic techniques, so 
it can offer the advantages of both separate approaches.

HSI has numerous advantages over other methods 
including multispectral imaging technology (MSI), near 
infrared spectroscopy (NIRS), and RGB (Red-Green-
Blue) imaging. The only difference between MSI and 
HSI is the number of wavelengths. If there are more than 
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10 wavelengths, MSI is the case. The RGB imaging, and 
NIRS was compared with MSI, and HSI was presented in 
Table 1 (ElMasry & Sun 2010; Feng & Sun 2012; Gowen 
et al. 2007).

In the end, it will produce a three-dimensional cube 
known as a hypercube by producing spatial maps at 
various wavelengths (ElMasry & Sun  2010; Williams & 
Sendin 2019). Each hyperspectral image contains unique 
data. Hypercube can be compared to a book in that each 
page contains unique information and that each page 
represents a different wavelength. HSI can be used to 
determine the different dietary components and their 
geographical distribution in the sample. The aim of this 
review is to introduce a novel non-destructive approach 
for identification and quantification of intrinsic as well as 
extrinsic quality of food.

Materials and methods
Collection and sorting of literature
Around 60 literatures were collected online by using key-
words such as hyperspectral imaging, imaging and com-
puter vision technology, non-destructive spectroscopy, 
etc. on google scholar.

Literatures were sorted on the basis of information. 
The information in literature related to basics of hyper-
spectral imaging, components of HSI, HSI used for food 
safety and quality was selected. After exclusion of litera-
tures, 46 literatures were finally selected after manually 
analysis of information given in papers and discussion of 
relevance with the paper.

Results and discussion
Hyperspectral imaging technique components
Figure  1 depicts a typical HSI system used in research 
carried out by Du et  al. (2020). The system is made up 
of five main parts: a light source or illumination unit, a 
stage for movement or translation, a spectrograph or 
wavelength dispersion device, a camera or area detector, 
and a computer with the necessary software (ElMasry & 
Sun 2010; Lu et al. 2020; Maldonado et al. 2018).

Due to the interaction between light and matter, the 
light source or illumination unit is essential for both spec-
troscopy and cameras. The objective-specified spectral 
range must be emitted by the source. There are two basic 
categories of light sources that can be used for spectrum 
imaging applications: illumination and excitation. For 
transmittance and reflection imaging, narrowband light is 
frequently employed as the excitation source and broad-
band light as the illumination source (Li et al. 2018). Halo-
gen lights, light-emitting diodes (LEDs), and lasers are the 
main sources of HSI (Amigo & Grassi 2019). According to 
Amigo 2010 and Amigo & Grassi 2019, the optimal illumi-
nation should be as even, wide, and sample-damage-free 
as possible. The light sources are typically angled towards 
the sample at a 45-degree angle (Amigo & Grassi  2019). 
Halogen lamps-often tungsten halogen lamps-might pro-
vide the necessary light in the operational range of the 

Table 1 Comparison of RGB imaging, and NIRS with MSI and HSI

RGB imaging Red-Green-Blue imaging, NIRS Near Infra-Red Spectroscopy, MSI 
Multi Spectral Imaging, HSI Hyper Spectral Imaging

Feature RGB imaging NIRS MSI HSI

Spatial information Yes No Yes Yes

Spectral information No Yes Limited Yes

Multi-constituent information Limited Yes Limited Yes

Sensitivity to minor components No No Limited Yes

Building chemical images No No No Yes

Fig. 1 Components of hyperspectral imaging system (Du et al. 2020)
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ultraviolet, visible, and NIR sectors. The key benefits of 
halogen lights include their wide electromagnetic spectrum 
(340–2500 nm) coverage, low cost compared to the lamp’s 
price, low voltage requirement, and commercial availabil-
ity (Amigo & Grassi 2019). The VIS-NIR-HSI systems were 
designed with the LED solution in mind as a more afforda-
ble lighting alternative. Different narrow band wavelengths 
are produced using monochromatic, VIS-emitting LEDs. 
GaAs-based LEDs with a wavelength range of 870–980 nm 
were the first infrared LEDs to be described (Amigo & 
Grassi  2019; Quist et  al.  1962). For HSI and MSI, lasers 
and other tunable sources are also employed as excitation 
sources. Gas, dye solution, semiconductor, and crystal are 
all placed inside the resonant optical cavity, which stimu-
lates emission to produce light (Qin 2010).

The heart of the HSI is the wavelength dispersion device 
(Wu & Sun 2013). In order to project broad-spectrum 
light onto a camera or detector, wavelength dispersion 
devices such as prisms, gratings, and filters are frequently 
used (Li et al. 2018). Filter wheels, image spectrographs, 
acousto-optic tunable filters (AOTF), and liquid crystal 
tunable filters are used as wavelength dispersion devices 
for the spectral imaging approach. A bandpass filter 
rejects additional light radiation outside of the bandpass, 
and a filter wheel is a simple instrument that has vari-
ous bandpass filters in a disc. The imaging spectrograph 
is an improved version of the standard spectrograph that 
can instantly scatter a wide range of light spectra into 
distinct spectral wavelengths (Qin  2010). Electronically 
adjustable band pass filters include AOTF and LCTF. The 
solid state AOTF device consists of a crystal, an acous-
tic absorber, an acoustic transducer, a variable source 
operating at radio frequencies (RF), and a beam stop. 
Tellurium Dioxide  (TeO2) is a typical crystal for produc-
ing AOTF and is based on light-sound interactions in 
crystals (Qin 2010). In order to block out all other wave-
lengths other than a certain wavelength, LCTF uses elec-
tronically controlled liquid crystal cells that are encircled 
by two polarizers (Qin 2010).

As an area detector for HSI, complementary metal 
oxide semiconductor and charge coupled device (CCD) 
cameras are used. Light conveying valuable information 
that will be captured by cameras after travelling through 
a wavelength dispersion device (Qin 2010). CCD sensors 
are made of light-sensitive components like silicon (Si) 
or indium gallium arsenide (InGaAs). (Wu & Sun 2013). 
Aluminium or stainless-steel is preferred as sample 
holders.

Methods for creating a three‑dimensional hypercube
Point scanning, line scanning, area scanning, and sin-
gle shot are the four methods used to generate a cube 

of hyperspectral images (Amigo & Grassi  2019; Amigo 
et al. 2013; Li et al. 2018; Lu et al. 2020; Wu & Sun 2013).

Point scan is a top left scanning technique that pro-
duces one-dimensional spectral data for each measure-
ment (Amigo & Grassi 2019). It is also known as “whisker 
broom imaging”. In addition to point scan, push broom 
imaging and line scan methodologies also produce cubes 
using one spatial dimension and one spectral dimen-
sion. Area scanning, which similarly has two dimen-
sions but both of which are spatial, is seen at the bottom 
left. According to Wu and Sun (2013), it is also known 
as spectral scanning or wavelength scanning. The most 
recent method, single shot, is the only one that can con-
currently gather two spatial and one spectral pieces of 
information.

Point scan is not preferred for production line because 
it needs fixed position to scan whereas others are pre-
ferred for scanning of food products within the produc-
tion line. The selection of scanning method depends 
on the purpose of the study. Localized visualization of 
chemical compounds needs fixed position (Williams & 
Sendin 2019) (Fig. 2).

Image acquisition modes
Typically, reflectance mode was employed in the majority 
of research. The two additional modes of transmittance 
and interaction are also used for image capturing. The 
reflectance mode was used to extract high relative infor-
mation from a sample’s reflected light (Wu & Sun 2013). 
In transmittance mode, light that passed through the 
sample was recorded. The light source and cameras are 
placed 180 degrees apart from each other (Lu et al. 2020). 
It has the capacity to provide greater in-depth knowl-
edge (Schaare & Fraser 2000; Wu & Sun 2013). The light 
source and detectors are set up in interactance mode, 
which combines reflectance and transmittance modes, 
on the same side at a 45° angle (ElMasry & Wold  2008; 
Wu & Sun 2013) (Fig. 3).

Steps for analyzing hyperspectral image data
No sample preparation is necessary for the HSI system. 
HSI technique is not suitable for liquid foods but for 
powdered foods previously prepared aluminium plate 
(50  mm length* 50  mm width *15  mm height) having 
square well (30 mm length* 30 mm width * 2 mm depth) 
was used (Lim et al. 2016). Calibration is necessary since 
the detector can only detect spectral intensity and not 
the original reflectance value after image acquisition and 
creation of hyperspectral images at various wavelengths 
(Wu & Sun 2013). Black and white reference should be 
used to calibrate acquired hyperspectral pictures. The 
following equation can be used to calibrate reflectance:
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Fig. 2 Methods for creating a three-dimensional hypercube (Wu & Sun 2013)

Fig. 3 Modes: reflectance, transmittance and interactance (Lu et al. 2020)
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Ic is a corrected hyperspectral image, B is a black image 
with nearly 0% reflectance, Io is an original hyperspectral 
image, and W is a white reference image with roughly 
99.9% reflectance, according to Wu and Sun (2013).

Other important factors need to optimize for improved 
image quality. According to Riccioli et  al. (2019) it is 
recommended to scan reference material for every ten 
sample scans, and dark ambient conditions and stainless-
steel sample holder improved acquired images using NIR 
HSI system (Fig. 4).

After hyperspectral image calibration, picture data 
extraction and analysis are required. Large amounts of 
data are produced by HSI from a single sample. Some 

Ic =
(Io − B)× (100)

(W− B)

chemometric algorithms and visualizing tools are 
needed for the mining of valuable or meaningful data 
(Williams & Sendin  2019). Some of the tools that are 
frequently used for hyperspectral image processing 
include MATLAB (MathWorks, Natick, MA, USA), 
Unscrambler (CAMO PROCESS AS, Oslo, Norway), 
and Environment for Visualizing Images (ENVI) soft-
ware (Research Systems, Boulder, CO, USA) (Wu & 
Sun 2013).

Preprocessing is necessary following picture acquisi-
tion, according to Williams and Sendin (2019). Spatial 
and spectral preprocessing are needed to get rid of 
unwanted image artefacts (Amigo et al. 2013). Accord-
ing to Amigo et al. (2013), preprocessing entails unfold-
ing, background removal, dead pixel removal, spike 

Fig. 4 Flowchart of a sequence of common procedures for examining hyperspectral image data
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removal, and area of interest (ROI) selection. The 
issue of extremely high dimensionality can be solved 
by choosing spectral data at particular wavelengths 
(ElMasry & Sun 2010).

To forecast or visualize the hidden quality informa-
tion, multivariate analysis is utilized to assess numerous 
variables of retrieved features (Wu & Sun  2013). Both 
qualitative classification and quantitative regression are 
categories for these techniques. Defective samples from 
new samples can be distinguished using multivariate 
classification. Multivariate classification also includes 
unsupervised and supervised classification. It is super-
vised classification if prior knowledge of predefined 
classes is necessary for classification (Wu & Sun  2013). 
Unsupervised techniques include Canonical Soft Inde-
pendent and Modelling Class Analogy, Linear Discrimi-
nant Analysis, Support Vector Machine, Discriminant 
Analysis, Artificial Neural Network, and Partial Least 
Squares-Discriminant Analysis, while supervised tech-
niques include Self-Organizing Map, Factor Analysis, 
Hierarchical Cluster Analysis, and Principle Component 
Analysis. To establish a relationship between a desired 
physical, chemical, or biological feature of an object 
and its spectrum, multivariate regression modelling is 
required. Principle Component Regression, Partial Least 
Squares Regression, and Multiple Linear Regression are 
examples of linear quantitative regression models. Arti-
ficial Neural Network and Support Vector Machine are 
examples of non-linear quantitative regression models 
(Kamruzzaman 2019). For model calibration and valida-
tion, component concentrations will be examined using 
conventional techniques. Numerous studies were con-
ducted utilizing the HSI technique to evaluate food safety 
and quality after it was understood how it operated. 
Table 2 presents a selection of research studies on the use 
of HSI for food safety and quality evaluation.

Applications
Merits
In terms of food quality and safety, HSI technology may 
be very advantageous to the food sector. Before using 
HSI technology, its advantages and disadvantages must 
be considered. First of all, as HSI is a non-destructive 
approach, it is possible to use the same sample for sev-
eral purposes or analyses. With HSI technology, minimal 
sample preparation is required before analysis. This pro-
cedure is distinct from others where the use of chemicals 
or solvents is necessary. Therefore, there are no issues 
with the hazardous chemicals or trash that this method 
produces. It is helpful for both internal and external 
parameter analysis. With the aid of HSI, qualitative and 
quantitative analysis is also possible. Analysis by a model 
that has been calibrated and validated is relatively simple. 

The sample information generated by HSI comprises the 
quantity of the component at a particular area. Addition-
ally, it has the capacity to simultaneously identify several 
sample constituents. It will produce the chemical image 
of the sample, making it very simple to see the chemi-
cal components that are present in the sample (ElMasry 
& Sun  2010). Using hyperspectral imaging technology, 
Yoon et  al. (2015) developed an automated system for 
colony segmentation that can detect colonies with above 
99% accuracy. According to Thiruppathi et  al. (2017), 
NIR hyperspectral imaging can distinguish between dis-
tinct stages of fungal infection and varying quantities of 
ochratoxin A in grain kernels at an earlier stage.

Demerits
It is necessary to have huge storage capacities because 
HSI will produce a significant volume of data. To pro-
cess the amount of data, fast computers are also nec-
essary. The method’s biggest flaw is its computational 
complexity. For this technology, model calibration and 
validation are essential. It is challenging to extract useful 
information from so many photos and analyze that data 
because it is capable of producing several hyperspectral 
images at various wavelengths. According to ElMasry 
and Sun (2010), For the localized measurement of liquid 
products or homogenous samples, HSI has its limita-
tions. To measure and quantify food quality and safety, 
more precisely calibrated and verified models are needed 
(Panagou et al. 2014). Using HSI, adulterants in milk were 
qualitatively analyzed with positive results; however, 
localized chemical images of liquid products could not be 
obtained (Kimbahune et al. 2016). It is quite challenging 
to develop high-accuracy models for such a vast number 
of microorganisms and to validate the models.

Conclusion
After studying all the aspects of the non-destructive 
hyperspectral imaging technology, it was stated that 
emerging technology such as hyperspectral imaging tech-
nology is very useful technology to improve the quality & 
safety of food in India instead of our current technolo-
gies. It can be easy to evaluate safety, and quality of foods 
including fruits and vegetables, dairy goods, meat prod-
ucts, seafood, grains, and legumes using hyperspectral 
imaging technology. Improved imaging equipment, high 
speed computers, advanced chemometrics models, large 
data storage capacities, advanced research to improve 
models, properly validated models and vast knowledge 
of hyperspectral imaging technology leads to an easy, 
time saving, and accurate quality and safety evaluation 
of foods. Combining hyperspectral imaging with Raman 
microscopic imaging (RMI) and fluorescence micro-
scopic imaging (FMI) will improve the ability to analyze 
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Table 2 HSI method evaluation of food quality and safety

PCA Principle Component Analysis, SVM Support Vector Machine, PLS-DA Partial Least Squares-Discriminant Analysis, PLSR Partial Least Squares Regression, LDA Linear 
Discriminant Analysis, MLR Multiple Linear Regression, LS-SVM Least Squares- Support Vector Machine, R Correlation coefficient, R2 Co-efficient of Determination, SEP 
Standard Error of Performance; R2

P Co-efficient of Determination of Prediction; R2
CV Co-efficient of Determination in Cross Validation

Sample Application Models Result Reference Analysis

Apple Bruises PCA Able to identify both Nicolai et al. 2006 Qualitative

Bitter pit PLSR Qualitative

Starch content PLS-DA R = 0.79 Menesatti et al. 2009 Qualitative; Quantitative

SEP = 23.50

Mandarins Penicillium digitatum LDA Accuracy = 91% Gomez-Sanchis et al. 2008 Qualitative

Grapes Anthocyanin PLSR R2 = 0.6 Fernandes et al. 2011 Qualitative; Quantitative

Milk Powder Melamine PLSR Able to detect 0.02% melamine 
Concentration

Lim et al. 2016 Qualitative; Quantitative

Cheese Fat content PLSR R2 = 0.979 Darnay et al. 2017 Qualitative; Quantitative

Lamb Muscle discrimination in lamb 
meat

PCA, LDA Accuracy = 100% Kamruzzaman et al. 2011 Qualitative

pH, colour & drip loss PLSR R2 = 0.65, 0.91 & 0.77, respectively Kamruzzaman et al. 2012 Qualitative; Quantitative

Beef Determination of WHC in beef PLSR R2
CV = 0.89 ElMasry et al. 2011 Quantitative

Determination of color values, 
pH, and tenderness

PLSR R2
CV = 0.88, 0.81 & 0.73, respec-

tively
ElMasry et al. 2012 Qualitative; Quantitative

TVC, Pseudomonas spp. PLS-DA R2 = 0.91 Panagou et al. 2014 Qualitative; semi-Quantitative

TVC SVM R2 = 0.98 Tsakanikas et al. 2016 Qualitative

TVC MLR R2 = 0.96 Peng et al. 2009 Qualitative

Pork Quality classification in pork PCA Accuracy = 96% Barbin et al. 2012a, b Qualitative

Determination of color values, pH 
and drip loss in pork

PLSR R2
CV = 0.93, 0.87 & 0.83, respec-

tively
Barbin et al. 2012a, b Qualitative; Quantitative

Determination of protein, mois-
ture & fat in pork

PLSR R2
P = 0.92, 0.87 & 0.95, respec-

tively
Barbin et al. 2013 Qualitative; Quantitative

TVC MLR R2 = 0.94 Tao & Peng 2015 Qualitative

E. Coli MLR R2 = 0.88 Tao et al. 2012 Qualitative; semi-Quantitative

Mutton Deoxy myoglobin PLSR, LS-SVM R2
p = 0.810 Cheng et al. 2020 Qualitative; Quantitative

Oxy myoglobin R2
p = 0.914

Met myoglobin R2
p = 0.915

Salmon TBC PCA Accuracy = 88% Sone et al. 2012 Qualitative

TVC PLSR, LS-SVM R2 = 0.985 Wu & Sun 2013 Qualitative

Enterobacteriaceae PLSR R = 0.95 He & Sun 2015 Qualitative; semi-Quantitative

LAB LS-SVM R = 0.94 He et al. 2014 Qualitative; semi-Quantitative

Carp TVC PLSR, LS-SVM R2 = 0.90 Cheng & Sun 2015 Qualitative

Fish meal Protein PLSR R = 0.96 Phiriyayon et al. 2014 Qualitative; Quantitative

MLR R = 0.96

Moisture PLSR R = 0.97 Qualitative; Quantitative

MLR R = 0.96

Fiber PLSR R = 0.84 Qualitative; Quantitative

MLR R = 0.81

Ash PLSR R = 0.97 Qualitative; Quantitative

MLR R = 0.90

Maize Aflatoxin  B1 PCA Accuracy = 98% Wang et al. 2015 Qualitative; Quantitative

Aflatoxin  B1 PCA Accuracy = 96.9% Chu et al. 2017 Qualitative; Quantitative

Barley Aspergillus and Penicillium ver-
rucosum

PCA Accuracy = 100% Thiruppathi et al. 2017 Qualitative; semi-Quantitative

Wheat Aspergillus niger PCA, SVM Accuracy = 92.9% Zhang et al. 2007 Qualitative; semi-Quantitative

Almond Aflatoxin  B1 PLS R2
c = 0.963; R2

cv = 0.957; 
R2

p = 0.958
Mishra et al. 2022 Qualitative; Quantitative

Wheat kernel Deoxynivalenol PLS Accuracy = 86% Femenias et al. 2022 Qualitative; Quantitative

Barley kernel Deoxynivalenol PLSR R2
p = 0.728 Su et al. 2021 Qualitative; Quantitative

Wheat Deoxynivalenol PCA-PLS Accuracy = 94.29% Shi et al. 2020 Qualitative; Quantitative
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microbes. Qualitative and quantitative analysis of liquid 
or homogenous samples are possible with this advanced 
technique; However, localization of chemical compounds 
is limited for such products. With all the studies men-
tioned in review, the hyperspectral imaging technology 
can improve the quality and safety analysis in less time, 
and more accuracy.
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