Abioye, V., Ogunlakin, G., & Taiwo, G. (2018). Effect of germination on anti-oxidant activity, total phenols, flavonoids and anti-nutritional content of finger millet flour. Journal of Food Processing & Technology, 9, 719.
Google Scholar
Adeyemo, S., & Onilude, A. (2013). Enzymatic reduction of anti-nutritional factors in fermenting soybeans by lactobacillus plantarum isolates from fermenting cereals. Nigerian Food Journal, 31(2), 84–90.
Article
Google Scholar
Agil, R., & Hosseinian, F. (2012). Dual functionality of triticale as a novel dietary source of prebiotics with antioxidant activity in fermented dairy products. Plant Foods for Human Nutrition, 67(1), 88–93.
Article
CAS
PubMed
Google Scholar
Al Hasan, S. M., Hassan, M., Saha, S., Islam, M., Billah, M., & Islam, S. (2016). Dietary phytate intake inhibits the bioavailability of iron and calcium in the diets of pregnant women in rural Bangladesh: A cross-sectional study. BMC Nutrition, 2(1), 24.
Article
Google Scholar
Alvesalo, J., Vuorela, H., Tammela, P., Leinonen, M., Saikku, P., & Vuorela, P. (2006). Inhibitory effect of dietary phenolic compounds on chlamydia pneumoniae in cell cultures. Biochemical Pharmacology, 71(6), 735–741.
Article
CAS
PubMed
Google Scholar
Anantharaju, P. G., Gowda, P. C., Vimalambike, M. G., & Madhunapantula, S. V. (2016). An overview on the role of dietary phenolics for the treatment of cancers. Nutrition Journal, 15(1), 99.
Article
PubMed
PubMed Central
CAS
Google Scholar
Antoine, J. M. (2010). Probiotics: Beneficial factors of the defence system. Proceedings of the Nutrition Society, 69(3), 429–433.
Article
CAS
PubMed
Google Scholar
Arora, S., Jood, S., & Khetarpaul, N. (2010). Effect of germination and probiotic fermentation on nutrient composition of barley based food mixtures. Food Chemistry, 119(2), 779–784.
Article
CAS
Google Scholar
Arora, S., Jood, S., Khetarpaul, N., & Goyal, R. (2009). Effect of germination and fermentation on ph, titratable acidity and chemical composition of pearl millet based food blends. Acta Alimentaria, 38(1), 107–115.
Article
CAS
Google Scholar
Arroyo-López, F., Querol, A., Bautista-Gallego, J., & Garrido-Fernández, A. (2008). Role of yeasts in table olive production. International Journal of Food Microbiology, 128(2), 189–196.
Article
PubMed
CAS
Google Scholar
Blandino, A., Al-Aseeri, M., Pandiella, S., Cantero, D., & Webb, C. (2003). Cereal-based fermented foods and beverages. Food Research International, 36(6), 527–543.
Article
CAS
Google Scholar
Bonatsou, S., Benítez, A., Rodríguez-Gómez, F., Panagou, E. Z., & Arroyo-López, F. N. (2015). Selection of yeasts with multifunctional features for application as starters in natural black table olive processing. Food Microbiology, 46, 66–73.
Article
CAS
PubMed
Google Scholar
Boudjou, S., Zaidi, F., Hosseinian, F., & Oomah, B. D. (2014). Effects of faba bean (Vicia faba L.) flour on viability of probiotic bacteria during kefir storage. Journal of Food Research, 3(6), 13–13.
Article
Google Scholar
Brglez Mojzer, E., Knez Hrnčič, M., Škerget, M., Knez, Ž., & Bren, U. (2016). Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules, 21(7), 901.
Article
PubMed Central
CAS
Google Scholar
Buri, R. C., von Reding, W., & Gavin, M. H. (2004). Description and characterization of wheat aleurone. Cereal Foods World, 49(5), 274.
CAS
Google Scholar
Calderon-Montano, M., Burgos-Morón, J. E., Pérez-Guerrero, C., & López-Lázaro, M. (2011). A review on the dietary flavonoid kaempferol. Mini Reviews in Medicinal Chemistry, 11(4), 298–344.
Article
CAS
PubMed
Google Scholar
Călinoiu, L. F., & Vodnar, D. C. (2018). Whole grains and phenolic acids: A review on bioactivity, functionality, health benefits and bioavailability. Nutrients, 10(11), 1615.
Article
PubMed Central
CAS
Google Scholar
Calixto-Campos, C. s., Carvalho, T. T., Hohmann, M. S., Pinho-Ribeiro, F. A., Fattori, V., Manchope, M. F., Zarpelon, A. C., Baracat, M. M., Georgetti, S. R., & Casagrande, R. (2015). Vanillic acid inhibits inflammatory pain by inhibiting neutrophil recruitment, oxidative stress, cytokine production, and NFκB activation in mice. Journal of Natural Products, 78(8), 1799–1808.
Article
CAS
PubMed
Google Scholar
Chandrasekara, A., & Shahidi, F. (2011). Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. Journal of Functional Foods, 3(3), 144–158.
Article
CAS
Google Scholar
Chao, C. y., Mong, M. C., Chan, K. C., & Yin, M. C. (2010). Anti-glycative and anti-inflammatory effects of caffeic acid and ellagic acid in kidney of diabetic mice. Molecular Nutrition & Food Research, 54(3), 388–395.
Article
CAS
Google Scholar
Charalampopoulos, D., Wang, R., Pandiella, S., & Webb, C. (2002). Application of cereals and cereal components in functional foods: A review. International Journal of Food Microbiology, 79(1–2), 131–141.
Article
CAS
PubMed
Google Scholar
Chibuike Ogodo, A., Agwaranze, D. I., Aliba, N. V., Chukwuma Kalu, A., Blessing Nwaneri, C., Gwirtz, J., Garcia-Casal, M., Ranum, P., Pena-Rosas, J., & Garcia-Casal, M. (2014). Effect of traditional processing on phosphorus content and some anti nutritional factors of pearl millet (Pennisetum glaucum L.). Journal of Biological Sciences, 19(1), 66–75.
Google Scholar
Choi, J.-G., Kang, O.-H., Lee, Y.-S., Oh, Y.-C., Chae, H.-S., Jang, H.-J., Kim, J.-H., Sohn, D.-H., Shin, D.-W., & Park, H. (2008). In vitro activity of methyl gallate isolated from galla rhois alone and in combination with ciprofloxacin against clinical isolates of salmonella. Journal of Microbiology and Biotechnology, 18(11), 1848–1852.
CAS
PubMed
Google Scholar
Coda, R., Rizzello, C. G., & Gobbetti, M. (2010). Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA). International Journal of Food Microbiology, 137(2–3), 236–245.
Article
CAS
PubMed
Google Scholar
Coulibaly, A., Kouakou, B., & Chen, J. (2011). Phytic acid in cereal grains: Structure, healthy or harmful ways to reduce phytic acid in cereal grains and their effects on nutritional quality. American Journal of Plant Nutrition and fertilization technology, 1(1), 1–22.
Article
Google Scholar
Dai, Q., Borenstein, A. R., Wu, Y., Jackson, J. C., & Larson, E. B. (2006). Fruit and vegetable juices and Alzheimer’s disease: The kame project. The American Journal of Medicine, 119(9), 751–759.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dar, A., Singh, S., Palod, J., Al Ain, K., Kumar, N., Khadda, B., & Farooq, F. (2017). Effect of probiotic, prebiotic and Synbiotic on hematological parameters of crossbred calves. International Journal of Livestock Research, 7(4), 127–136.
Google Scholar
Das, A., Raychaudhuri, U., & Chakraborty, R. (2012). Cereal based functional food of Indian subcontinent: A review. Journal of Food Science and Technology, 49(6), 665–672.
Article
CAS
PubMed
Google Scholar
Devi, K. P., Malar, D. S., Nabavi, S. F., Sureda, A., Xiao, J., Nabavi, S. M., & Daglia, M. (2015). Kaempferol and inflammation: From chemistry to medicine. Pharmacological Research, 99, 1–10.
Article
CAS
PubMed
Google Scholar
Di Stefano, E., White, J., Seney, S., Hekmat, S., McDowell, T., Sumarah, M., & Reid, G. (2017). A novel millet-based probiotic fermented food for the developing world. Nutrients, 9(5), 529.
Article
PubMed Central
CAS
Google Scholar
Dicko, M. H., Hilhorst, R., & Traore, A. S. (2005). Indigenous west African plants as novel sources of polysaccharide degrading enzymes: Application in the reduction of the viscosity of cereal porridges. African Journal of Biotechnology, 4(10), 1095–1104.
Duodu, K. G., & Awika, J. M. (2019). Phytochemical-related health-promoting attributes of sorghum and millets (pp. 225–258). Sorghum and Millets: Elsevier.
Google Scholar
Dykes, L., & Rooney, L. (2007). Phenolic compounds in cereal grains and their health benefits. Cereal Foods World, 52(3), 105–111.
CAS
Google Scholar
Dykes, L., & Rooney, L. W. (2006). Sorghum and millet phenols and antioxidants. Journal of Cereal Science, 44(3), 236–251.
Article
CAS
Google Scholar
Eitsuka, T., Tatewaki, N., Nishida, H., Kurata, T., Nakagawa, K., & Miyazawa, T. (2014). Synergistic inhibition of cancer cell proliferation with a combination of δ-tocotrienol and ferulic acid. Biochemical and Biophysical Research Communications, 453(3), 606–611.
Article
CAS
PubMed
Google Scholar
Elkhalifa, A. E. O., Ahmed, S. A. A., & Adam, S. (2007). Nutritional evaluation of Moringa Oleifera leaves and extract. Ahfad Journal, 24(2), 113.
Google Scholar
Elkhalifa, A. E. O., & Bernhardt, R. (2010). Influence of grain germination on functional properties of sorghum flour. Food Chemistry, 121(2), 387–392.
Article
CAS
Google Scholar
ElMaki, H. B., AbdelRahaman, S. M., Idris, W. H., Hassan, A. B., Babiker, E. E., & El Tinay, A. H. (2007). Content of antinutritional factors and HCl-extractability of minerals from white bean (Phaseolus vulgaris) cultivars: Influence of soaking and/or cooking. Food Chemistry, 100(1), 362–368.
Article
CAS
Google Scholar
Fahrioğlu, U., Dodurga, Y., Elmas, L., & Seçme, M. (2016). Ferulic acid decreases cell viability and colony formation while inhibiting migration of MIA PaCa-2 human pancreatic cancer cells in vitro. Gene, 576(1), 476–482.
Article
PubMed
CAS
Google Scholar
Foster-Powell, K., Holt, S. H., & Brand-Miller, J. C. (2002). International table of glycemic index and glycemic load values: 20021′2. The American Journal of Clinical Nutrition, 76, 5–56.
Article
CAS
PubMed
Google Scholar
Fuller, R. (1992). History and development of probiotics. In Probiotics (pp. 1–8). Dordrecht: Springer.
Gani, A., Wani, S., Masoodi, F., & Hameed, G. (2012). Whole-grain cereal bioactive compounds and their health benefits: A review. Journal of Food Processing & Technology, 3(3), 146–156.
Article
Google Scholar
Gliwa, J., Gunenc, A., Ames, N., Willmore, W. G., & Hosseinian, F. S. (2011). Antioxidant activity of alkylresorcinols from rye bran and their protective effects on cell viability of PC-12 AC cells. Journal of Agricultural and Food Chemistry, 59(21), 11473–11482.
Article
CAS
PubMed
Google Scholar
Grases, F., Prieto, R. M., & Costa-Bauza, A. (2017). Dietary phytate and interactions with mineral nutrients. In Clinical aspects of natural and added phosphorus in foods (pp. 175–183). New York: Springer.
Gunenc, A., Yeung, M. H., Lavergne, C., Bertinato, J., & Hosseinian, F. (2017). Enhancements of antioxidant activity and mineral solubility of germinated wrinkled lentils during fermentation in kefir. Journal of Functional Foods, 32, 72–79.
Article
CAS
Google Scholar
Hämäläinen, M., Nieminen, R., Vuorela, P., Heinonen, M., & Moilanen, E. (2007). Anti-inflammatory effects of flavonoids: Genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. In Mediators of inflammation 2007.
Google Scholar
Han, X., Shen, T., & Lou, H. (2007). Dietary polyphenols and their biological significance. International Journal of Molecular Sciences, 8(9), 950–988.
Article
CAS
PubMed Central
Google Scholar
Hassan, A. B., Ahmed, I. A. M., Osman, N. M., Eltayeb, M. M., Osman, G. A., & Babiker, E. E. (2006). Effect of processing treatments followed by fermentation on protein content and digestibility of pearl millet (Pennisetum typhoideum) cultivars. Pakistan Journal of Nutrition, 5(1), 86–89.
Article
Google Scholar
Hegde, P. S., Anitha, B., & Chandra, T. (2005). In vivo effect of whole grain flour of finger millet (Eleusine coracana) and kodo millet (Paspalum scrobiculatum) on rat dermal wound healing. Indian Journal of Experimental Biology, 43(3), 254–258.
PubMed
Google Scholar
Hejazi, S. N., Orsat, V., Azadi, B., & Kubow, S. (2016). Improvement of the in vitro protein digestibility of amaranth grain through optimization of the malting process. Journal of Cereal Science, 68, 59–65.
Article
CAS
Google Scholar
Holzapfel, W. (2002). Appropriate starter culture technologies for small-scale fermentation in developing countries. International Journal of Food Microbiology, 75(3), 197–212.
Article
CAS
PubMed
Google Scholar
Hooda, S., & Jood, S. (2003). Effect of soaking and germination on nutrient and antinutrient contents of fenugreek (Trigonella foenum graecum L.). Journal of Food Biochemistry, 27(2), 165–176.
Article
CAS
Google Scholar
Hou, Y. Z., Zhao, G. R., Yang, J., Yuan, Y. J., Zhu, G. G., & Hiltunen, R. (2004). Protective effect of Ligusticum chuanxiong and Angelica sinensis on endothelial cell damage induced by hydrogen peroxide. Life Sciences, 75(14), 1775–1786.
Article
CAS
PubMed
Google Scholar
Janicke, B., Hegardt, C., Krogh, M., Önning, G., Åkesson, B., Cirenajwis, H. M., & Oredsson, S. M. (2011). The antiproliferative effect of dietary fiber phenolic compounds ferulic acid and p-coumaric acid on the cell cycle of Caco-2 cells. Nutrition and Cancer, 63(4), 611–622.
Article
CAS
PubMed
Google Scholar
Jenner, A. M., Rafter, J., & Halliwell, B. (2005). Human fecal water content of phenolics: The extent of colonic exposure to aromatic compounds. Free Radical Biology and Medicine, 38(6), 763–772.
Article
CAS
PubMed
Google Scholar
Joye, I. (2019). Protein digestibility of cereal products. Foods, 8(6), 199.
Article
CAS
PubMed Central
Google Scholar
Ju, S. M., Kang, J. G., Bae, J. S., Pae, H. O., Lyu, Y. S., & Jeon, B. H. (2015). The flavonoid apigenin ameliorates cisplatin-induced nephrotoxicity through reduction of p53 activation and promotion of PI3K/Akt pathway in human renal proximal tubular epithelial cells. In Evidence-based complementary and alternative medicine 2015.
Google Scholar
Kamatham, S., Kumar, N., & Gudipalli, P. (2015). Isolation and characterization of gallic acid and methyl gallate from the seed coats of Givotia rottleriformis Griff. And their anti-proliferative effect on human epidermoid carcinoma A431 cells. Toxicology Reports, 2, 520–529.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang, M.-S., Oh, J.-S., Kang, I.-C., Hong, S.-J., & Choi, C.-H. (2008). Inhibitory effect of methyl gallate and gallic acid on oral bacteria. The Journal of Microbiology, 46(6), 744–750.
Article
CAS
PubMed
Google Scholar
Kaur, K. D., Jha, A., Sabikhi, L., & Singh, A. (2014). Significance of coarse cereals in health and nutrition: A review. Journal of Food Science and Technology, 51(8), 1429–1441.
Article
CAS
PubMed
Google Scholar
Kies, A. K., De Jonge, L. H., Kemme, P. A., & Jongbloed, A. W. (2006). Interaction between protein, phytate, and microbial phytase. In vitro studies. Journal of Agricultural and Food Chemistry, 54(5), 1753–1758.
Article
CAS
PubMed
Google Scholar
Kumar, B. V., Vijayendra, S. V. N., & Reddy, O. V. S. (2015). Trends in dairy and non-dairy probiotic products-a review. Journal of Food Science and Technology, 52(10), 6112–6124.
Article
CAS
Google Scholar
Kumari, D., Chandrasekara, A., & Shahidi, F. (2019). Bioaccessibility and antioxidant activities of finger millet food phenolics. Journal of Food Bioactives, 6, 100–109.
Lamsal, B., & Faubion, J. (2009). The beneficial use of cereal and cereal components in probiotic foods. Food Reviews International, 25(2), 103–114.
Article
CAS
Google Scholar
Lee, D., & Imm, J. Y. (2017). AMP kinase activation and inhibition of nuclear factor-kappa B (NF-κB) translocation contribute to the anti-inflammatory effect of tricin. Journal of Food Biochemistry, 41(2), e12293.
Article
CAS
Google Scholar
Lee, D., & Imm, J.-Y. (2018). Antiobesity effect of tricin, a methylated cereal flavone, in high-fat-diet-induced obese mice. Journal of Agricultural and Food Chemistry, 66(38), 9989–9994.
Article
CAS
PubMed
Google Scholar
Leroy, F., & De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science & Technology, 15(2), 67–78.
Article
CAS
Google Scholar
Liu, R. H. (2013). Dietary bioactive compounds and their health implications. Journal of Food Science, 78(s1), A18–A25.
Article
CAS
PubMed
Google Scholar
Liukkonen, K.-H., Katina, K., Wilhelmsson, A., Myllymaki, O., Lampi, A.-M., Kariluoto, S., Piironen, V., Heinonen, S.-M., Nurmi, T., & Adlercreutz, H. (2003). Process-induced changes on bioactive compounds in whole grain rye. Proceedings of the Nutrition Society, 62(1), 117–122.
Article
CAS
PubMed
Google Scholar
Mbithi-Mwikya, S., Van Camp, J., Yiru, Y., & Huyghebaert, A. (2000). Nutrient and antinutrient changes in finger millet (Eleusine coracan) during sprouting. LWT- Food Science and Technology, 33(1), 9–14.
Article
CAS
Google Scholar
McDonough, C., Awika, J., Turner, N., Xu, L., & Rooney, L. (2004). The potential for use of antioxidants from sorghum bran in foods as countermeasures against radiation damage in space AACC Annual Meeting Abstracts.
Google Scholar
Mennen, L. I., Walker, R., Bennetau-Pelissero, C., & Scalbert, A. (2005). Risks and safety of polyphenol consumption. The American Journal of Clinical Nutrition, 81(1), 326S–329S.
Article
CAS
PubMed
Google Scholar
Mohapatra, D., Patel, A. S., Kar, A., Deshpande, S. S., & Tripathi, M. K. (2019). Effect of different processing conditions on proximate composition, anti-oxidants, anti-nutrients and amino acid profile of grain sorghum. Food Chemistry, 271, 129–135.
Article
CAS
PubMed
Google Scholar
Naczk, M., & Shahidi, F. (2004). Extraction and analysis of phenolics in food. Journal of Chromatography A, 1054(1–2), 95–111.
Article
CAS
PubMed
Google Scholar
Narasimhan, A., Chinnaiyan, M., & Karundevi, B. (2015). Ferulic acid regulates hepatic GLUT2 gene expression in high fat and fructose-induced type-2 diabetic adult male rat. European Journal of Pharmacology, 761, 391–397.
Article
CAS
PubMed
Google Scholar
Narukawa, T., Hioki, A., & Chiba, K. (2012). Speciation and monitoring test for inorganic arsenic in white rice flour. Journal of Agricultural and Food Chemistry, 60(4), 1122–1127.
Article
CAS
PubMed
Google Scholar
Nassar, A. G., Mubarak, A. E., & El-Beltagy, A. E. (2008). Nutritional potential and functional properties of Tempe produced from mixture of different legumes. 1: Chemical composition and nitrogenous constituent. International Journal of Food Science & Technology, 43(10), 1754–1758.
Article
CAS
Google Scholar
Nirmala, P., & Ramanathan, M. (2011). Effect of myricetin on 1, 2 dimethylhydrazine induced rat colon carcinogenesis. Journal of Experimental Therapeutics & Oncology, 9(2), 101–108.
Nkhata, S. G., Ayua, E., Kamau, E. H., & Shingiro, J. B. (2018). Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Science & Nutrition, 6(8), 2446–2458.
Article
CAS
Google Scholar
Nyanzi, R., & Jooste, P. (2012). Cereal-based functional foods, probiotics. In E. Rigobelo (Ed.), ISBN: 978-953-51-0776-7 InTech. https://doi.org/10.5772/50120.
Chapter
Google Scholar
Oghbaei, M., & Prakash, J. (2016). Effect of primary processing of cereals and legumes on its nutritional quality: A comprehensive review. Cogent Food & Agriculture, 2(1), 1136015.
Article
CAS
Google Scholar
Ogunremi, O. R., Agrawal, R., & Sanni, A. I. (2015). Development of cereal-based functional food using cereal-mix substrate fermented with probiotic strain–Pichia kudriavzevii OG 32. Food Science & Nutrition, 3(6), 486–494.
Article
CAS
Google Scholar
Ostlund Jr., R. E. (2002). Phytosterols in human nutrition. Annual Review of Nutrition, 22(1), 533–549.
Article
CAS
PubMed
Google Scholar
Pandey, K. R., Naik, S. R., & Vakil, B. V. (2015). Probiotics, prebiotics and synbiotics-a review. Journal of Food Science and Technology, 52(12), 7577–7587.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peyer, L. C., Zannini, E., & Arendt, E. K. (2016). Lactic acid bacteria as sensory biomodulators for fermented cereal-based beverages. Trends in Food Science & Technology, 54, 17–25.
Article
CAS
Google Scholar
Piironen, V., Toivo, J., & Lampi, A.-M. (2002). New data for cholesterol contents in meat, fish, milk, eggs and their products consumed in Finland. Journal of Food Composition and Analysis, 15(6), 705–713.
Article
CAS
Google Scholar
Pradeep, P., & Sreerama, Y. N. (2018). Phenolic antioxidants of foxtail and little millet cultivars and their inhibitory effects on α-amylase and α-glucosidase activities. Food Chemistry, 247, 46–55.
Article
CAS
PubMed
Google Scholar
Pragasam, S. J., Venkatesan, V., & Rasool, M. (2013). Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation, 36(1), 169–176.
Article
CAS
PubMed
Google Scholar
Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290–4302.
Article
CAS
PubMed
Google Scholar
Raes, K., Knockaert, D., Struijs, K., & Van Camp, J. (2014). Role of processing on bioaccessibility of minerals: Influence of localization of minerals and anti-nutritional factors in the plant. Trends in Food Science & Technology, 37(1), 32–41.
Article
CAS
Google Scholar
Salas, C. E., Dittz, D., & Torres, M.-J. (2018). Plant proteolytic enzymes: Their role as natural pharmacophores. In Biotechnological applications of plant proteolytic enzymes (pp. 107–127). Cham: Springer.
Salmerón, I. (2017). Fermented cereal beverages: From probiotic, prebiotic and synbiotic towards nanoscience designed healthy drinks. Letters in Applied Microbiology, 65(2), 114–124.
Article
PubMed
Google Scholar
Sawant, A. A., Thakor, N. J., Swami, S. B., Divate, A. D., & Vidyapeet, B. S. (2012). Physical and sensory characteristics of ready-to-eat food prepared from finger millet based composite mixer by extrusion. Agricultural Engineering International: CIGR Journal, 15(1), 100–105.
Google Scholar
Shahidi, F., & Chandrasekara, A. (2013). Millet grain phenolics and their role in disease risk reduction and health promotion: A review. Journal of Functional Foods, 5(2), 570–581.
Article
CAS
Google Scholar
Shahidi, F., & Peng, H. (2018). Bioaccessibility and bioavailability of phenolic compounds. Journal of Food Bioactives, 4, 11–68.
Article
Google Scholar
Shahidi, F., & Yeo, J. (2018). Bioactivities of phenolics by focusing on suppression of chronic diseases: A review. International Journal of Molecular Sciences, 19(6), 1573.
Article
PubMed Central
CAS
Google Scholar
Sindhu, S. C., & Khetarpaul, N. (2001). Probiotic fermentation of indigenous food mixture: Effect on antinutrients and digestibility of starch and protein. Journal of Food Composition and Analysis, 14(6), 601–609.
Article
CAS
Google Scholar
Singh, A., Gupta, S., Kaur, R., & Gupta, H. (2017). Process optimization for anti-nutrient minimization of millets. Asian Journal of Dairy and Food Research, 36(4), 322–326.
Google Scholar
Singh, A. k., Rehal, J., Kaur, A., & Jyot, G. (2015). Enhancement of attributes of cereals by germination and fermentation: A review. Critical Reviews in Food Science and Nutrition, 55(11), 1575–1589.
Article
CAS
PubMed
Google Scholar
Siwela, M., Taylor, J. R., de Milliano, W. A., & Duodu, K. G. (2007). Occurrence and location of tannins in finger millet grain and antioxidant activity of different grain types. Cereal Chemistry, 84(2), 169–174.
Article
CAS
Google Scholar
Subba Rao, M., & Muralikrishna, G. (2002). Evaluation of the antioxidant properties of free and bound phenolic acids from native and malted finger millet (Ragi, Eleusine coracana Indaf-15). Journal of Agricultural and Food Chemistry, 50(4), 889–892.
Article
CAS
PubMed
Google Scholar
Taguri, T., Tanaka, T., & Kouno, I. (2006). Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure. Biological and Pharmaceutical Bulletin, 29(11), 2226–2235.
Article
CAS
PubMed
Google Scholar
Timotheo, C., & Lauer, C. (2018). Toxicity of vegetable tannin extract from Acacia mearnsii in Saccharomyces cerevisiae. International journal of Environmental Science and Technology, 15(3), 659–664.
Article
CAS
Google Scholar
USDA. (2018). USDA national nutrient database for standard reference, release 27.
Google Scholar
Verni, M., Rizzello, C. G., & Coda, R. (2019). Fermentation biotechnology applied to cereal industry by-products: Nutritional and functional insights. Frontiers in Nutrition, 6, 42.
Waniska, R. D. (2000). Structure, phenolic compounds, and antifungal proteins of sorghum caryopses. In Technical and institutional options for sorghum grain mold management: Proceedings of an international consultation. (pp. 18-19). Patancheru: ICRISAT.
Watanabe, N., Hirayama, R., & Kubota, N. (2007). The chemopreventive flavonoid apigenin confers radiosensitizing effect in human tumor cells grown as monolayers and spheroids. Journal of Radiation Research, 48(1), 45–50.
Article
CAS
PubMed
Google Scholar
Willett, W., Manson, J., & Liu, S. (2002). Glycemic index, glycemic load, and risk of type 2 diabetes. The American Journal of Clinical Nutrition, 76(1), 274S–280S.
Article
CAS
PubMed
Google Scholar
Yeh, R.-D., Chen, J.-C., Lai, T.-Y., Yang, J.-S., Yu, C.-S., Chiang, J.-H., Lu, C.-C., Yang, S.-T., Yu, C.-C., & Chang, S.-J. (2011). Gallic acid induces G0/G1 phase arrest and apoptosis in human leukemia HL-60 cells through inhibiting cyclin D and E, and activating mitochondria-dependent pathway. Anticancer Research, 31(9), 2821–2832.
CAS
PubMed
Google Scholar